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ABSTRACT 

A Soil and Water Assessment Tool (SWAT) model was developed for the Iowa-Cedar 

River Basin (ICRB), a 32,660 km2 watershed dominated by agricultural land cover (~70%) to 

simulate hydrology and water quality for the prediction of stream discharge, nitrate loads, and 

nitrate concentration under climate and land use change scenarios. Iowa exports as much as 20% 

of the nitrogen entering the Gulf of Mexico at the mouth of the Mississippi, contributing to Gulf 

hypoxia as well as local threats to water quality in the ICRB. The model utilized a combined 

autocalibration and sensitivity procedure incorporating Sequential Uncertainty Fitting (SUFI) 

and generalized additive models. This procedure resulted in Nash-Sutcliffe Efficiency (NSE) 

goodness-of-fit statistics that met literature guidelines for monthly mean stream discharge 

(NSE≥0.60) and daily nitrate load (NSE≥0.50). Artificial neural networks coupled with SWAT 

stream discharges aided in the simulation of daily mean nitrate concentrations that met the 

literature guideline (NSE≥0.50).  

The North American Regional Climate Change Assessment Program (NARCCAP) 

provided an ensemble of 11 climate change scenarios. NARCCAP is a multi-institutional effort 

to simulate climate change at the mesoscale by downscaling global circulation models (GCM) 

with regional climate models (RCM). The resulting GCM-RCM produced synthetic precipitation 

and temperature time-series that drove the SWAT simulations and scenarios. The land use 

scenarios were a collaboration with the U.S. Army Corps of Engineers, using a rule-based GIS 

method to generate scenarios that (1) maximized agricultural productivity, (2) improved water 

quality and reduced flooding, and (3) enhanced local biodiversity. The SWAT simulations and 

ensemble climate change scenarios resulted in a warmer and wetter climate with greater and 

more extreme discharge in all seasons except summer where the models indicate a somewhat 

higher probability  of extreme low flows (p-value<0.05). The land use scenarios for SWAT 

showed that nitrate load and discharge positively and linearly scale with percent of agricultural 

land area (p-value<0.05). 
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PUBLIC ABSTRACT 

Climate change manifests not merely as global warming; the latter term only starts to 

describe the impact of human activities on the planet. Extreme floods and droughts are another 

facet of climate change that are becoming accepted in the scientific discourse as not just 

independent events, but part of a growing trend. Naturally, different locales will weather 

different effects under climate change and how those effects emerge depend on how humans 

shape and use their land. Iowa has a fully developed agrarian economy infamous for releasing 

large amounts of nutrients into the waters of the United States. Nitrate, a major component and 

end-product of fertilizer application, is a threat to local water supplies, increasing the cost of 

drinking water treatment as the source water becomes more contaminated. Nitrate exiting Iowa 

eventually enters the Gulf of Mexico, accelerating algal blooms that subsequently suffocate the 

coastal waters deprived of oxygen.  This research projects the future by building a computational 

model capable of simulating water quantity and water quality on the order of decades through the 

use of the Soil and Water Assessment Tool (SWAT). The model developed succeeded at 

simulating the past, a test that all models must pass. Applying scenarios created by leading 

institutions that study climate and land use change, the model foresees the possibility of greater 

flooding events and nitrate loads in a wetter and warmer future.  No prediction is so exact to give 

the time and place of such events, but what SWAT can give is a sense of the average. An 

increase in the average implies an increase in the larger values of greater discharge and nitrate 

runoff. 
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CHAPTER 1: INTRODUCTION AND RESEARCH 
OBJECTIVES 

Introduction 

The looming impacts of a changing climate may already be underway as the public and 

policymakers focus with concern on what appear to be more frequent extreme weather events in 

the form of flood intensities and drought durations (IPCC, 2013). The midwestern United States 

has suffered crop losses in the very recent past from the 2012 drought (USDA, 2014). In addition 

to drought more losses may be compounded from flood damage (Rosenzweig et al., 2002). 

While the flood events were local or regional, the downstream effects on water quality were 

apparent with the well-known Gulf of Mexico hypoxia catalyzed by runoff from nitrogen 

fertilizer and agricultural land use (Goolsby, 2000). Eastern Iowan watersheds contributed as 

much as 20% of the nitrogen discharge from the Mississippi-Atchafalaya River Basin (Goolsby 

et al., 1999).  

During intense rainfall events like the historic June 2008 Eastern Iowa flood, nitrogen 

loading from flood events accounted for 22-46% of annual nitrogen flux for agricultural basins 

(Hubbard et al., 2011). Yet to consider these episodic events as indicators for climate change 

could be a scientifically dubious practice (Seneviratne, 2012). The science of climate change is 

not so precise nor computation so cheap that one could predict a particular extreme event over 

another in any specific area (Katz, 2010). Instead one must rely on many models, general global 

statistical trends, and potential scenarios to arrive at a likely estimate (Tebaldi & Knutti, 2007). 

The National American Regional Climate Change Assessment Program (NARCCAP) 

provided eleven Regional Climate Models embedded in General Circulation Models (RCM-

GCM) combinations (Mearns et al., 2007). The combinations simulated the Intergovernmental 

Panel on Climate Change (IPCC) A2 emission scenario that depicts a heterogeneous world 

where regional economic interests predominate along with continuously increasing population. 

At the half century mark, the A2 scenario was also the midpoint of the different IPCC emission 
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scenarios (Figure 1-1). NARCCAP modeled a historical period (1971-1998) and a projected 

period (2041-2068) for calibration and comparison purposes. The same time-frames were 

utilized for hydrologic and water quality modeling in this dissertation. 

The climate models by design simulated multi-decadal time-scales and thus the 

watershed responses were modeled accordingly. For large watersheds the computational 

requirements for a fine-resolution and completely physically-based modeling were vast, and 

individual stakeholders in the watershed lacked the resources to meet these requirements. The 

alternative route was to employ a less computationally intense watershed model that can simulate 

large spatial and temporal scales. The Soil and Water Assessment Tool or SWAT was one option 

(Douglas-Mankin, 2010). Another option existed in coupling physically based models with data-

driven models that have no explicit form prior to being fed data. Examples of these data-driven 

models were regression trees, fuzzy logic systems, genetic algorithms, and artificial neural 

networks (Solomatine & Ostfeld, 2008). The data-driven model chosen was the artificial neural 

network due to the wide literature supporting its usage in hydrological research (Hsu et al., 

1995). 

The SWAT model was built on several models of crop growth (EPIC), rainfall-runoff 

hydrology (CREAMS), and water quality (QUAL2E); the intention of this consolidation was to 

simulate specifically agricultural watershed dynamics in regards to both water yields and 

constituent loading of nutrients, sediment, and pesticides (Gassman et al., 2007). The current 

version of SWAT can also incorporate land use change. Land use change represented the human 

system component responding to climate change scenarios. The use of SWAT in combination 

with climate model data generated from NARCCAP was advantageous in sketching out possible 

future scenarios where both climate and land use have changed.  

Research Questions  

(1) Is SWAT an appropriate watershed model to simulate large spatial and temporal scales in 

regards to stream discharge, nitrate loading, and nitrate concentrations? 
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(2) If SWAT is unable to simulate acceptably any of the observed quantities of interest in 

(1), can an alternative and equally or less computationally intensive data-driven method 

compensate for SWAT? 

 

(3) When applied to SWAT does the ensemble of climate models show agreement with 

respect to simulating the historical and projected seasonal precipitation, stream discharge, 

evapotranspiration, and nitrate loads in eastern Iowa? 

 

(4) What is the influence of modifying agricultural land area on stream discharge and nitrate 

loads in the NARCCAP projected time-frame in 2041-2048? 

Hypotheses 

H1a SWAT simulates well the multi-decadal monthly mean stream discharge with goodness-

of-fit statistics that meet or exceed the minimum-acceptable criteria reported in the model 

literature. 

 

H1b SWAT simulates daily nitrate loadings well with goodness-of-fit statistics that meet or 

exceed the minimum reported in the model literature.  

 

H1c SWAT simulates daily nitrate concentrations poorly due to the model structure being 

only semi-physically based with different granularities for different model components. 

SWAT is unable to simulate spikes in nitrate concentration exceeding the EPA drinking 

water limit of 10 mg/L nor do the goodness of fit statistics meet the guidelines set in the 

model literature. 
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H2 Artificial neural networks (ANNs) can compensate for SWAT’s poor performance in 

simulating nitrate concentrations on large spatial scales by weakly coupling ANNs with 

SWAT’s stream discharge outputs. 

 

H3a The ensemble of NARCCAP climate models and SWAT simulations show agreement in 

modeling precipitation, discharge, evapotranspiration and nitrate loads in the historical 

(1971-1998) when compared to historical precipitations and SWAT simulated discharge, 

evapotranspiration, and nitrate load driven by the observed climate. 

 

H3b The SWAT simulations driven by NARCCAP’s projected period are significantly 

different (α=0.05) from SWAT simulations driven by NARCCAP’s historical period.  

 

H3c The ensemble of NARCCAP climate models and SWAT simulations show agreement in 

modeling precipitation, discharge, evapotranspiration and nitrate loads in the projected 

(2041-2068) time frame. 

 

H4 Land use change incorporated into SWAT simulations with NARCCAP input data show 

a linear trend in the annual mean stream discharge and nitrate loads with increasing 

agricultural land area in the historical period. 

Organization 

This dissertation is organized into eight chapters to address the research objectives and 

hypotheses with the first chapter introducing and providing organizing context to the 

dissertation. Chapter 2 contains a description and history of the study area in the Iowa-Cedar 

River Basin, a comprehensive description of the SWAT model and the underlying theory, and a 

general literature review on hydrological modeling related to the basin or areas similar or 
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geographically near. More in-depth literature review related to the artificial neural networks, 

climate change models, and land use change scenarios can be found in their respective chapters. 

Chapter 3 details the development of a SWAT model for the Iowa-Cedar River Basin 

with description of input data and discretization choices for the model development. Chapter 4 

describes a novel approach in model calibration by using a combined sensitivity and 

autocalibration procedure derived from the SWAT-CUP software. The results of the sensitivity 

analysis and autocalibration are included in this chapter for the monthly mean discharge at eight 

USGS stream gauges from years 1973-2012 and the mean daily nitrate loads and concentrations 

at two USGS gauges for the years 2008-2013, excluding all or parts of January, February, and 

March where the nitrate sensors are inactive. 

Chapter 5 describes the artificial neural networks in detail and reviews literature of its 

application in and outside the field of watershed modeling. The artificial neural network method 

had two applications in this dissertation. The first purpose was filling in data gaps for the daily 

nitrate concentrations so that monthly loads could be calculated and that the autocalibration 

procedure for nitrogen may have more data with which to work. The second purpose was 

exploratory research into combining SWAT’s strength in hydrology with neural networks to 

compensate for the poor nitrate simulations found in the results of Chapter 4. Chapter 6 describes 

the application of the NARCCAP climate models to drive SWAT simulations for the historical 

1971-1998 and projected 2041-2068 periods. This chapter also includes a literature review of 

climate change models in hydrological research and briefly touch on the mathematics and 

physics of the models. A more detailed evaluation of the NARCCAP climate models is beyond 

the scope of this dissertation. 

Chapter 7 details the land use change scenarios and the methodology to develop the 

scenarios. United States Army Corps of Engineers (USACE) developed the raw input data for 

the scenarios. This chapter describes the procedure to transform the raw data into a form usable 

by SWAT and shows the results from the simulations as well as the climate change projections 

for each land use scenario. Finally, Chapter 8 summarizes the results from all the simulations and 
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discusses the possible interpretations together with potential future research. Chapter 8 also 

attempts to re-organize and parse this dissertation into a series of peer-review journal articles that 

have the submission potential. The Appendix section contains raw data or charts in case the raw 

data were too numerous to be included in the main body. 
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Figure 1-1 IPCC emission scenarios with potential surface warming. Scenario A2 of which 

the GCM-RCM combinations utilize was the midpoint warming scenario at half 
century which is the projected period of simulation of 2041-2068 (Nakicenovic & 
Swart, 2000) 
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CHAPTER 2: SITE DESCRIPTION AND MODEL 
LITERATURE REVIEW 

Site Description 

The Iowa-Cedar River Basin (ICRB) is a 32,660 km2 watershed dominated by corn and 

soybean row crop agriculture. The watershed starts at an elevation of 441m above sea level on 

the border between north-central Iowa and south-central Minnesota and drains into the 

Mississippi River at 165m above sea level. The Iowa and Cedar Rivers are two major river 

systems that form independent basins until their confluence in Columbus Junction, IA. The 

longitudinal extent of the ICRB has the watershed occupying two major climate zones: the cool 

humid continental in the north and warm humid continental in the south. Annual mean 

precipitation for the basin from 1970-2010 was approximately 895 mm. The runoff or discharge 

proportion of the atmospheric water input was approximately 32 percent or 286 mm for the same 

period.  

Opened to non-Native American settlement in 1833 from the Black Hawk Purchase, the 

history of agriculture in the ICRB and Iowa in general (Throne, 1949) started from subsistence 

with crops of wheat, corn, and oats, barley or flax and perhaps a few hogs and pack animals. 

Abundant forests east of the Mississippi river provided timber and construction materials for the 

expansions of these settlements. The native Iowa landscape was tall-grass prairie, and forests 

were clustered mostly in riparian zones, leading to the use of sod for prairie houses during the 

early subsistence era (Bogue, 1963). Because of the relatively large temperature extremes 

between the seasons, the population remained small and the farms likewise. The agricultural 

landscape at this time had minimal impacts on the environment and local ecology (Foster et al., 

2003). 

The introduction of farm machinery reduced the difficulty of tilling the fertile, but deeply 

vegetated prairie soils, expanding the size of individual farms. Wheat as a dominant crop gave 

way to corn as the harsh Iowa winters killed fall wheat and the hot summers burned spring wheat 
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(Ross, 1951). The expansion of railroads into Iowa and transcontinental networks such as the 

Pacific Railroad helped to settle western Iowa increased population growth (Cole, 1921). The 

tributaries of the Upper Mississippi River Basin (UMRB) allowed inexpensive shipping 

downstream, and so the links from farm to rail to river steamboats provided a transportation 

infrastructure to transition the agricultural landscape to that of expansive industrial agriculture 

(Page & Walker, 1991).  

The twentieth century advance in the Haber-Bosch process (ammonium production from 

the nitrogen in air and hydrogen, a natural gas byproduct) further bolstered industrial agriculture 

as large-scale production increased in the proceeding decades. In less than two centuries the 

native Iowan prairie grasslands disappeared into marginal remnants and small preserves, 

replaced by agriculture with corn as the primary cash crop with soybean rotations to maintain 

soil productivity (Karlen et al., 1991). As of 2012 the land cover distribution in the ICRB was 

approximately 42% corn, 26% soybeans, 15% rangeland, 8% urban or developed, 2% wetlands, 

1% open water, and the remaining 6% split amongst other crops (USDA, 2012).  

Due to extensive fertilizer applications throughout the basin in recent years, nitrogen load 

from eastern Iowa watersheds had been approximately 74.2×103 metric tons per year, and 77% 

of that load was in the form of nitrate (Goolsby et al., 2001). The watershed contained nineteen 

US Geological Survey (USGS) gage stations that measure discharge and four of those stations 

collected 15 minute, high-frequency measurements of combined nitrate plus nitrite 

concentrations. Eight gage stations were used for model calibration for stream discharge, and 

two stations were used for calibrating nitrogen concentrations and loadings. The discharge 

stations chosen were spatially representative of the watershed and spanned multiple stream 

orders, covering small streams such as Old Man’s Creek in Iowa City and the larger Cedar and 

Iowa Rivers.  

The high frequency nitrate plus nitrite data from the Cedar Rapids and Wapello stations 

only covered the years 2009-2013, and the instruments were inactive during the months of 

December, January, and February and were frequently inactive during other months due to 
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technical problems, resulting in numerous data gaps even in periods of activity. Figure 2-1 shows 

the geographic extent of the watershed, locations of the USGS gage stations, and locations of the 

climate stations used in this dissertation for model development. Table 2-1 summarizes the 

discharge data at the eight stations and Table 2-2 and Table 2-3 summarize the nitrogen 

concentration and load data at Cedar Rapids and Wapello, respectively. 

SWAT Description 

The Soil and Water Assessment Tool (SWAT) was a time-continuous distributed 

hydrologic model that incorporated several modules to simulate the atmospheric, land, 

subsurface, and in-stream processes for the watershed. SWAT was not a singular model, but a 

package of several that consolidated around the Simulator for Water Sources in Rural Basins 

(SWRRB), developed by the USDA Agriculture Research Service (ARS) (Williams et al., 1985) 

The other models or modules were the CREAMS (Chemicals, Runoff, and Erosion from 

Agricultural Management Systems) (Knisel, 1980), GLEAMS (Groundwater Loading Effects on 

Agricultural Management Systems) (Leonard et al., 1987), and EPIC (Erosion-Productivity 

Impact Calculator) (Williams et al., 1984). Because of the agricultural slant of these models, 

SWAT was the most appropriate choice for simulating the ICRB. 

 SWAT split its processes into two components: the land or soil phase and the water or in-

stream phase. The land phase operated the EPIC crop growth modules and routed surface water 

into the subsurface through a discretized series of soil layers constituting a soil column. Beneath 

the column was the groundwater system with the shallow aquifer being the physical system 

directly simulated. The deep aquifer was an abstraction created through a coefficient that diverts 

total recharge. Vadose zone hydrology was indirectly simulated by plant uptake of water 

between the soil surface and shallow aquifer. The outputs of the land phase modules entered the 

stream network in the water phase. Water bodies such as reservoirs or lakes were optional 

components, user-defined, and links with the in-stream hydrology and water quality modules. 

The modules previously mentioned simulated the land component and their outputs entered the 
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stream phase. The water quality module in SWAT was QUAL2E, a one dimensional model 

developed by the US EPA (Brown & Barnwell, 1987).  

Aside from the whole watershed, SWAT had three levels of computation, each operating 

differently depending on the user configuration: the subbasin, the reach, and the Hydrologic 

Response Unit (HRU). A subbasin was a spatially explicit construct that was determined by flow 

accumulation on a digital elevation map (DEM). The number of subbasins for a watershed was 

based on user discretion either by specifying a minimum catchment area if automatically 

delineating the watershed through public domain software such as ArcHydro (Maidment, 2002) 

or by manual configuration. Each subbasin had one reach or channel running through its lowest 

elevation. SWAT assumed the dimensions of the reach to be longitudinally uniform in cross-

sectional area, side slope, longitudinal slope, and bed roughness. Aside from ponds abstracted as 

a fraction of a subbasin area, the reach was the water phase’s smallest unit of computation, 

realized as an implicit backward-difference finite difference scheme.   

The smallest unit of computation for the land modules was the (HRU). An HRU was a 

unique combination of land use, slope class, and soil type. Chapter 3 details the development of 

an HRU and what data can be used to determine an HRU. The user had the option of defining an 

entire subbasin as an HRU or have more than one HRU in a subbasin. The model lost granularity 

when computing each subbasin as an HRU, but computation time for simulations greatly 

decreased. If the user chose to have multiple HRUs, the model gains greater granularity and 

longer computation times; however, the HRUs are not spatially explicit. The HRUs were 

abstracted as fractions of a subbasin’s area. Thus the input of constituent loads and water into a 

reach were the area weighted sum of the HRUs’ outputs: 

Equation 2-1 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑛𝑛 =  � 𝑓𝑓𝑚𝑚,𝑛𝑛𝐻𝐻𝐻𝐻𝑈𝑈𝑚𝑚,𝑛𝑛

NHRU

i=1

 

Inputn was the input into the n’th subbasin’s reach. HRUm,n  was an output from the m’th HRU in 

the n’th subbasin.  fm,n was the fraction of the total subbasin area that the m’th HRU takes up. 
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Figure 2-2 shows a set of flow charts for a SWAT model simulation. If a given subbasin 

contained more than one HRU, then the land subroutine must be completed for each HRU before 

the loads into the water phase began. Because the HRUs were abstracted as area fractions, 

SWAT did not route overland flow and constituents between HRUs within a single subbasin. 

One compromise was to have a large number of small subbasins that are also HRUs, but the 

computation time would greatly increase.  

The following subsections detail the theory and mathematics underlying the SWAT 

model. Only the equations that pertained to the objectives of this dissertation were explained in 

detail. The equations and variables were modified from the SWAT Theoretical Documentation 

(Neitsch et al., 2011) to be more direct and accessible. The major variables related to soil 

hydrology are listed in Table 2-4, soil nitrogen dynamics variables in Table 2-5, and in-stream 

nitrogen dynamics variables in Table 2-6. Figure 2-3 shows the water balance for land and water 

phases and how the two phases interact. Figure 2-4 shows nitrogen dynamics between the 

various pools, sources, and sinks in both the land and water phase.  

Model Theory 

Soil Hydrology 

The land phase hydrology was based on the soil water balance equation (Arnold et al., 

1998): 

Equation 2-2 𝑆𝑆𝑊𝑊𝑡𝑡 =  𝑆𝑆𝑊𝑊0 + ��𝑃𝑃𝑖𝑖 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 − 𝐸𝐸𝑇𝑇𝑖𝑖 − 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 − 𝑄𝑄𝑔𝑔𝑔𝑔,𝑖𝑖
∗ − 𝑄𝑄𝑙𝑙𝑙𝑙𝑡𝑡,𝑖𝑖

∗ �
𝑡𝑡

𝑖𝑖=1

 

In units of mm H2O and for the i'th day, SWt was the final soil water content, SW0 the initial soil 

water content, Pi the precipitation, Qsurf,i the surface runoff, ETi the evapotranspiration, and wseep,i 

the water percolation exiting the soil bottom. Q*
gw,i was the sum of the ground water processes 

such as revap and baseflow from the shallow aquifer. Q*
lat,i was the sum of lateral flow from 

saturated soil layers and flow from tile drains. Additional processes were canopy storage from 
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vegetation available for evapotranspiration and bypass flow for clay-heavy soils. SWAT offered 

numerous methods for modeling the processes and the user set the methods. The default methods 

and settings were used for model development and modified during the calibration phase.  

Surface Runoff 

Surface run off was calculated with the runoff curve number method initially developed 

by the Natural Resource Conservation Service (NRCS) (USDA, 1985): 

Equation 2-3 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
0 𝑃𝑃 < 𝐼𝐼𝑙𝑙

(𝑃𝑃 − 𝐼𝐼𝑙𝑙)2

𝑃𝑃 − 𝐼𝐼𝑙𝑙 − 𝑆𝑆
𝑃𝑃 > 𝐼𝐼𝑙𝑙

 

Ia was the initial amount of water that includes surface storage, canopy interception, and 

infiltration before runoff (mm H2O). S was the maximum soil moisture retention after runoff 

begins (mm H2O). Ia and S were determined with the runoff curve number CN: 

Equation 2-4 𝑆𝑆 =
1000
𝐶𝐶𝐶𝐶

− 10 

Equation 2-5 𝐼𝐼𝑙𝑙 =  0.2𝑆𝑆 

CN had a range between 30 and 100 where values increase with runoff potential. CN was 

determined empirically and based on NRCS soil groupings, surface characteristics such as 

vegetation cover or impervious surface area, and antecedent soil moisture conditions.  

Evapotranspiration 

The Penman-Monteith equation determined evapotranspiration or ET (mm H2O) 

(Monteith, 1965): 

Equation 2-6 𝐸𝐸𝑇𝑇 =
Δ(𝐻𝐻𝑛𝑛 − 𝐺𝐺) + 𝜌𝜌𝑙𝑙𝑐𝑐𝑠𝑠𝑔𝑔𝑙𝑙𝛿𝛿𝛿𝛿

Δ𝐿𝐿𝜈𝜈 + 𝐿𝐿𝜈𝜈𝛾𝛾(1 + 𝑔𝑔𝑙𝑙
𝑔𝑔𝑠𝑠

)
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Rn was the net irradiance (W∙m-2), G the ground heat flux (W∙m-2), ρa the dry air density (kg∙m-3), 

cp the specific heat capacity of air (J∙kg-1∙K-1), ga the conductivity of air (m∙s-1), gs the 

conductivity of plant stoma (m∙s-1), δe the specific humidity (Pa), Lυ the volumetric latent heat of 

vaporization (2453 MJ∙m-3 for water), γ the psychometric constants (~66 Pa∙K-1) and Δ the rate of 

change of saturation specific humidity with air temperature (Pa∙K-1).  

Evaporative demand took into account the soil layer’s depth below the surface (zs): 

Equation 2-7 𝐸𝐸𝑇𝑇𝑗𝑗 = 𝐸𝐸𝑇𝑇 ⋅
𝑧𝑧𝑠𝑠,𝑗𝑗

𝑧𝑧𝑠𝑠,𝑗𝑗 + 𝛿𝛿2.374−.00713𝑧𝑧𝑠𝑠,𝑗𝑗
 

Because the evaporative demand was different at the lower and upper boundary of the soil layer, 

the actual evapotranspiration was calculated as: 

Equation 2-8 𝐸𝐸𝑇𝑇𝑙𝑙𝑎𝑎𝑡𝑡,𝑗𝑗 = 𝐸𝐸𝑇𝑇𝑗𝑗,𝑙𝑙 − 𝐸𝐸𝑇𝑇𝑗𝑗,𝑠𝑠 ⋅ 𝛿𝛿𝑒𝑒𝑐𝑐𝑒𝑒 

ETj,l and ETj,u were evaporative demand at the lower and upper boundary of the soil layer and 

esco was the unitless soil evaporation compensation coefficient that varies between 0 and 1. 

Soil Water  

 SWAT simulated water flow in the soil by discretizing the column into layers, and the 

parameters such as bulk density, porosity, and hydraulic conductivity were based on the soil type 

of that layer. The soil type followed USDA conventions where the percent of silt, sand, clay 

determine the properties (Soil Survey Staff, 1993). The soil type yielded two parameters that 

control soil water storage: the field capacity (FC) and the permanent wilting point (WP). Both 

parameters had units as fractions of total soil volume or mm H2O when used to calculate water 

content. FC was soil type-specific and informally defined as the water content held in soil after 

excess water has drained way and the rate of downward movement has decreased, typically after 

2-3 days of rain or irrigation (Israelson & West, 1922). Physically defined, FC was the bulk 

water content retained in the soil at -33 kPa or -3.37 mm of hydraulic head. WP was nominally 
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crop-specific and defined as the water content found when plants growing in the soil wilted and 

did not recover if their leaves were kept in a humid atmosphere overnight (Veihmeyer & 

Hendrickson, 1928). 

 SWAT estimated the WP for the j'th layer as a function of the clay content (mc, %) and 

the bulk density (ρb): 

Equation 2-9 𝑊𝑊𝑃𝑃𝑗𝑗 = 0.40
𝑚𝑚𝑎𝑎𝜌𝜌𝑏𝑏
100

 

The field capacity for the j’th layer was determined as the sum of the plant-available water 

capacity (AWC) and WPi: 

Equation 2-10 𝐹𝐹𝐶𝐶𝑗𝑗 = 𝑊𝑊𝑃𝑃𝑗𝑗 + 𝐴𝐴𝑊𝑊𝐶𝐶𝑗𝑗  

AWC was an input from the user, but had default values based on soil type and land cover. 

Surface runoff occurred when the water content of the soil exceeds field capacity. SWAT 

simulated saturated flow directly and assumed water was uniformly distributed within a layer. 

Unsaturated flow between layers was modeled indirectly by plant water uptake and soil water 

evaporation due to surface heat or pressure. Water remaining after surface runoff occurred (or 

not) was available for percolation, lateral flow, or tile flow unless soil temperature was below 

0°C and the layer was frozen. 

 Percolation was calculated for each layer and occurred when saturation was met for one 

layer and the layer below was not saturated. Water percolation (wperc,j, mm H2O) was a function 

of SW, FC, the time step (Δt) and the travel time through the layer: 

Equation 2-11 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎,𝑗𝑗 = �𝑆𝑆𝑊𝑊𝑗𝑗 − 𝐹𝐹𝐶𝐶𝑗𝑗  � �1 − 𝛿𝛿
−Δ𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� 

Travel time ttrav was determined by the water content at complete saturation (SATj, mm H2O), the 

FCj, and the saturated hydraulic conductivity for that layer (Ksat,j, mm·hr-1): 
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Equation 2-12 𝑡𝑡𝑡𝑡𝑠𝑠𝑙𝑙𝑡𝑡 =
𝑆𝑆𝐴𝐴𝑇𝑇𝑗𝑗 − 𝐹𝐹𝐶𝐶𝑗𝑗
𝐾𝐾𝑠𝑠𝑙𝑙𝑡𝑡,𝑗𝑗

 

Water that percolated through all soil layers entered the vadose zone between the bottom of the 

soil profile and the top of the shallow aquifer. 

 A perched water table formed in areas whose soil profiles contain an impervious layer 

(zimp, mm), a parameter set by the user or a default of six meters. If zimp was above the depth of 

the lowest layer, then no percolation into the vadose zone occurred. If zimp was below the soil 

profile, then the percolation out of the bottom layer (wseep) was a function of the difference 

between the lowest layer depth and the impervious layer depth (Δzimp,jmax) and the percolation out 

of the lowest layer calculated from Equation 2-11 (wperc,jmax): 

Equation 2-13 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑗𝑗𝑚𝑚𝑡𝑡𝑚𝑚

Δ𝑧𝑧𝑖𝑖𝑚𝑚𝑠𝑠,𝑗𝑗𝑚𝑚𝑡𝑡𝑚𝑚

Δ𝑧𝑧𝑖𝑖𝑚𝑚𝑠𝑠,𝑗𝑗𝑚𝑚𝑡𝑡𝑚𝑚 + 𝛿𝛿8.833−2.598Δ𝑧𝑧𝑖𝑖𝑚𝑚𝑖𝑖,𝑗𝑗𝑚𝑚𝑡𝑡𝑚𝑚
 

Under saturated conditions water may move upward from a perched water table and fill 

overlying layers. The height of the perched water table (zw, mm) was a function of the soil 

profile’s SW, FC, porosity (ϕ), the air-filled porosity (ϕair) and zimp: 

Equation 2-14 𝑧𝑧𝑔𝑔 = 𝑧𝑧𝑖𝑖𝑚𝑚𝑠𝑠
∑ 𝑆𝑆𝑊𝑊𝑗𝑗𝑚𝑚𝑡𝑡𝑚𝑚
𝑗𝑗=1 − ∑ 𝐹𝐹𝐶𝐶𝑗𝑗𝑚𝑚𝑡𝑡𝑚𝑚

𝑗𝑗=1  

�𝜙𝜙 − ∑ 𝐹𝐹𝐶𝐶𝑗𝑗𝑚𝑚𝑡𝑡𝑚𝑚
𝑗𝑗=1 � (1 − 𝜙𝜙𝑙𝑙𝑖𝑖𝑠𝑠)

 

Lateral flow was water entering the stream perpendicular to the longitudinal direction; the 

source of lateral flow was the saturated zone due to a perched water table. SWAT simulated 

lateral flow as a kinematic storage model (Sloan & Moore, 1984) based on the continuity 

equation on the hillslope and its soil columns as the control volume. The excess soil water in a 

layer available for lateral flow (SWj,lat) was a function of the drainable porosity (ϕd, mm·mm-1), 

saturated thickness normal to the hillslope, expressed as a fraction of the total layer thickness 

(H0, mm·mm-1), and the length of the hillslope (Lhill, m): 
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Equation 2-15 𝑆𝑆𝑊𝑊𝑗𝑗,𝑙𝑙𝑙𝑙𝑡𝑡 = 103 ⋅
𝐻𝐻𝑜𝑜𝜙𝜙𝑑𝑑𝐿𝐿ℎ𝑖𝑖𝑙𝑙𝑙𝑙

2
 

The drainable porosity was calculated as the total porosity of the layer minus the porosity at field 

capacity: ϕd = ϕsoil – ϕFC. The net lateral flow (Qlat, mm H2O·day-1) at the hillslope outlet was a 

function of the saturated thickness Ho, the slope of the control volume (θhill), and the saturated 

hydraulic conductivity (Ksat, mm·hr-1): 

Equation 2-16 𝑄𝑄𝑙𝑙𝑙𝑙𝑡𝑡 = 24𝐻𝐻𝑜𝑜𝐾𝐾𝑠𝑠𝑙𝑙𝑡𝑡𝜃𝜃ℎ𝑖𝑖𝑙𝑙𝑙𝑙   

Rearranging Equation 2-15 and combining with Equation 2-16 yielded the following equation for 

lateral flow in the j’th soil layer: 

Equation 2-17 𝑄𝑄𝑙𝑙𝑙𝑙𝑡𝑡,𝑗𝑗 = 0.024 ⋅ �
2𝑆𝑆𝑊𝑊𝑗𝑗,𝑙𝑙𝑙𝑙𝑡𝑡𝐾𝐾𝑠𝑠𝑙𝑙𝑡𝑡,𝑗𝑗𝜃𝜃ℎ𝑖𝑖𝑙𝑙𝑙𝑙

𝜙𝜙𝑑𝑑,𝑗𝑗𝐿𝐿ℎ𝑖𝑖𝑙𝑙𝑙𝑙
�  

Tile drainage behaved similarly as lateral flow with zdrain the height of tile drain (mm) and tdrain 

was the time required to drain the soil to field capacity (hr): 

Equation 2-18 𝑄𝑄𝑡𝑡𝑖𝑖𝑙𝑙𝑠𝑠 =
𝑧𝑧𝑔𝑔 + 𝑧𝑧𝑑𝑑𝑠𝑠𝑙𝑙𝑖𝑖𝑛𝑛

𝑧𝑧𝑔𝑔
(𝑆𝑆𝑊𝑊 − 𝐹𝐹𝐶𝐶)�1 − 𝛿𝛿

−24
𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖𝑑𝑑�  

Groundwater 

SWAT simulated shallow aquifers with the water balance being: 

Equation 2-19 𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑖𝑖−1 + 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑠𝑠ℎ − 𝑄𝑄𝑔𝑔𝑔𝑔 − 𝑤𝑤𝑠𝑠𝑠𝑠𝑡𝑡𝑙𝑙𝑠𝑠 − 𝑤𝑤𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠,𝑠𝑠ℎ 

In units of mm H2O, aqsh,i was the water stored in the shallow aquifer on day i, aqsh,i-1 the water 

stored in the shallow aquifer on day i-1, wrchrg,sh the recharge entering the shallow aquifer, Qgw 

the groundwater flow out of the shallow aquifer and into the main channel, wrevap  water moving 

through the soil in response to water deficiencies, and wpump,sh the water removed by pumping. 

SWAT simulated inputs into the deep aquifer from the shallow aquifer, but the water moving 
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into that zone was treated as lost to the system and not considered for subsequent calculations in 

the soil hydrology. The water balance for the deeper aquifers was: 

Equation 2-20 𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠,𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑑𝑑𝑠𝑠,𝑖𝑖−1 + 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑑𝑑𝑠𝑠 − 𝑤𝑤𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠,𝑑𝑑𝑠𝑠 

In units of mm H2O, aqdp,i was the water stored in the deep aquifer on day i, aqdp,i-1 the water 

stored in the shallow aquifer on day i-1, 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑑𝑑𝑠𝑠 the recharge entering the deep aquifer, and 

wpump,dp the water removed by pumping. While water can enter the soil system from the deep 

aquifer through pumping, this water did not come from the original balance in Equation 2-2. 

Pumping was implemented in the simulations and scenarios. 

 Recharge for a given day (wrchrg,i) was function of a user-defined groundwater delay or 

drainage time (δgw, days) with a default of 31 days, percolation from the soil profile (wseep), and 

recharge from the previous day (wrchrg,i-1): 

Equation 2-21 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔 = 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �1 − 𝛿𝛿
−1
𝛿𝛿𝑔𝑔𝑔𝑔� + 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑖𝑖−1𝛿𝛿

−1
𝛿𝛿𝑔𝑔𝑔𝑔 

Recharge split into deep and shallow aquifers by way of a coefficient (βdp): 

Equation 2-22 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑑𝑑𝑠𝑠 =  𝛽𝛽𝑑𝑑𝑠𝑠𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔 

Equation 2-23 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑠𝑠ℎ =  𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔 − 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑑𝑑𝑠𝑠 

Groundwater or baseflow into the reach occurred when water stored in the shallow 

aquifer exceeds a user-defined threshold (aqsh,t,gw, mm H2O). The steady-state solution to 

groundwater flow was a function of the hydraulic conductivity of the shallow aquifer (Ksat,aq, 

mm·d-1), the distance from the subbasin divide to the main channel (Lgw, m), and the height of 

the water table (zw, m) (Arnold et al., 1993) was: 

Equation 2-24 𝑄𝑄𝑔𝑔𝑔𝑔 = 𝑧𝑧𝑔𝑔
8000𝐾𝐾𝑠𝑠𝑙𝑙𝑡𝑡,𝑙𝑙𝑎𝑎

𝐿𝐿𝑔𝑔𝑔𝑔2
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With the inclusion of time-varying water table height and a non-steady state aquifer recharge, the 

ground water flow to the stream on the i'th day (Qgw,i) was calculated as: 

Equation 2-25 𝑄𝑄𝑔𝑔𝑔𝑔,𝑖𝑖 = �
𝑄𝑄𝑔𝑔𝑔𝑔,𝑖𝑖−1𝛿𝛿−𝛼𝛼𝑔𝑔𝑔𝑔Δ𝑡𝑡 + 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑠𝑠ℎ�1 − 𝛿𝛿−𝛼𝛼𝑔𝑔𝑔𝑔Δ𝑡𝑡� if 𝑎𝑎𝑎𝑎𝑠𝑠ℎ > 𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑡𝑡,𝑔𝑔𝑔𝑔

 𝑄𝑄𝑔𝑔𝑔𝑔,0𝛿𝛿−𝛼𝛼𝑔𝑔𝑔𝑔𝑡𝑡 if wrchrg,sh = 0
0 otherwise

 

Qgw,i-1 was the groundwater flow from day i-1, Δt the time step, αgw the baseflow recession 

constant, and Qgw,0 the groundwater flow at the start of the recession, defined as the period after 

recharge has stopped. The baseflow recession constant was a direct index of groundwater flow 

response to changes in recharge (Smedema & Rycroft, 1983). Graphically, the recession was 

approximated by the length of time a hydrograph fell to and remained at some minimal flow after 

a storm event. This parameter could be estimated from streamflow records by calculating the 

record-derived number of days (N) since the start of the recession and the groundwater flow at 

day N (Qgw,N). 

Equation 2-26 𝛼𝛼𝑔𝑔𝑔𝑔 =
1
𝐶𝐶

ln �
𝑄𝑄𝑔𝑔𝑔𝑔,𝑁𝑁

𝑄𝑄𝑔𝑔𝑔𝑔,0
� 

 Revap was the process by which water from the shallow aquifer diffuses upward during 

periods where the overlying layers were dry due to low rainfall or excess evapotranspiration. 

Revap was also a function of land cover as deep root plants may draw directly from the shallow 

aquifer and some parameters depended on the plant or crop. The maximum amount of water 

removed from the aquifer due to revap (wrvp,max, mm H2O) was a function of a revap coefficient 

(βrvp) and the potential evapotranspiration (ET): 

Equation 2-27 𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝛽𝛽𝑠𝑠𝑡𝑡𝑠𝑠𝐸𝐸𝑇𝑇 

The actual revap depended on a user-defined threshold value (aqsh,t,r, mm H2O) for the shallow 

aquifer volume that must be met before revap occured: 
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Equation 2-28 𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠,𝑖𝑖 = �
0 if 𝑎𝑎𝑎𝑎𝑠𝑠ℎ ≤ 𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑡𝑡,𝑠𝑠

𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠,𝑚𝑚𝑙𝑙𝑚𝑚 − 𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑡𝑡,𝑠𝑠 if 𝑎𝑎𝑎𝑎𝑠𝑠ℎ ∈ �𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑡𝑡,𝑠𝑠 , 𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑡𝑡,𝑠𝑠 + 𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠,𝑚𝑚𝑙𝑙𝑚𝑚�
𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠,𝑚𝑚𝑙𝑙𝑚𝑚 if 𝑎𝑎𝑎𝑎𝑠𝑠ℎ ≥ (𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑡𝑡,𝑠𝑠 + 𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠,𝑚𝑚𝑙𝑙𝑚𝑚)

 

Soil Nitrogen 

Nitrogen dynamics were simulated separately in the land and in-stream phases. The land 

phase had five pools: the organic pools consisting of “active”, “fresh”, and “stable” organic 

nitrogen and the mineral pools of ammonium and nitrate (Figure 2-4a). Active organic nitrogen 

increased from organic nitrogen fertilizer, decreased with mineralization into nitrate, and could 

transfer to and from stable organic nitrogen. Stable organic nitrogen was not available for 

mineralization and acted as storage for humic organic nitrogen. Fresh organic nitrogen was the 

nitrogenous plant residue. The fresh organic nitrogen could only exist on the top 10 mm or the 

surface layer of the soil column.  

The nitrate pooled increased from inorganic fertilizer, organic nitrogen mineralization, 

and atmospheric deposition and decreased through denitrification, plant uptake, and leaching into 

the groundwater systems. SWAT did not have a pool for nitrite in the soil phase of the nitrogen 

cycle (Neitsch et al., 2011). Ammonium entered the soil as fertilizer and atmospheric deposition 

and left through volatilization into the gas phase or nitrification via the two-step biological 

oxidation by bacteria.  

Equation 2-29 2NH4
+ + 3O2 → 2NO2

− + 2H2O + 4H+ 

Equation 2-30 2NO2
− + O2 → 2NO3

−  

Plant uptake of nitrate was modeled separately as part of the EPIC crop growth module. This 

module also coded for atmospheric nitrogen fixation, which directly enters the plant biomass 

instead of residing in the soil. For brevity the following equations and processes were for each 

layer in a soil column of an HRU except for inputs from a specific layer denoted with j.  
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Organic Nitrogen 

Stable and active organic nitrogen pools were initially grouped together as nitrogenous 

humus or Norg,s (mg·kg-1). The soil organic nitrogen concentration was a function of the soil 

organic carbon content or Corg (%) in the j’th soil layer, under the assumption of a 14:1 ratio of 

carbon to nitrogen in humus: 

Equation 2-31 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠 = 104 �
𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔
14

� 

The initial active (Norg,actv, mg·kg-1) and stable (Norg,stab, mg·kg-1) organic nitrogen pools were 

partitioned as fractions of Norg,s. The initial fraction (fN,act) of active nitrogen in the nitrogenous 

humus was 0.02. The fresh organic nitrogen pool or Norg,frsh (mg·kg-1) was set to 0.15% of the 

total plant residue mass (Rsurf, kg·ha-1).  

Equation 2-32 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡 =  𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔𝑓𝑓𝑁𝑁,𝑙𝑙𝑎𝑎𝑡𝑡 

Equation 2-33 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑡𝑡𝑙𝑙𝑏𝑏 =  𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔(1 − 𝑓𝑓𝑁𝑁,𝑙𝑙𝑎𝑎𝑡𝑡) 

Equation 2-34 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 1.5 × 10−3 ⋅ 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Decomposition of the fresh nitrogenous plant residue into humus, the microbial 

mineralization of active organic nitrogen or plant residue to inorganic nitrogen available for plant 

uptake, and the assimilation of inorganic to unavailable organic nitrogen all depended on the 

residue or humic ratio of carbon to nitrogen (εC:N) and soil water content, a proxy for aerobic 

conditions. Bacteria break down humus for energy and cell growth; if nitrogen in the humus was 

low (εC:N >30:1), bacteria would draw NH4
+ and NO3

- from the soil. Bacteria released inorganic 

nitrogen into the soil when the nitrogen content was high (εC:N < 20:1) (Seligmand & van 

Keulen, 1981). SWAT soil phase simulated net mineralization of organic nitrogen, incorporating 

assimilation to limit the rate, but SWAT did not allow net organic nitrogen production from 
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bacterial processes.  The modeled assumed the organic nitrogen from bacterial cells (alive and 

dead) was negligible compared to plant matter. 

The exchange between active, stable, and fresh organic, and their decomposition to 

nitrate was a function of the following unitless variables: a transfer rate constant between active 

and stable organic nitrogen (βstab,actv), a mineralization rate constant (βmin), crop-specific rate 

constants for plant residue decomposition (βR), a soil temperature parameter (γT), a water content 

parameter (γw), and a plant residue composition parameter (γn). γn was a function of εC:N, humus 

carbon to phosphorous ratio (εC:P), and the residue content for the j’th layer (Rj): 
 

Equation 2-35 𝛾𝛾𝑇𝑇 = 0.9
𝑇𝑇𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙

𝑇𝑇𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 + 𝛿𝛿9.93−0.312⋅𝑇𝑇𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠
+ 0.1 

Equation 2-36 𝛾𝛾𝑔𝑔 =
𝑆𝑆𝑊𝑊
𝐹𝐹𝐶𝐶

 

Equation 2-37 𝛾𝛾𝑛𝑛 = min

⎩
⎪
⎨

⎪
⎧𝛿𝛿−0.693εC:N−25

25 | εC:N =
0.58𝐻𝐻𝑗𝑗

𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝐶𝐶𝑂𝑂3−
 

𝛿𝛿0.693𝜀𝜀C:P−200
200 |  εC:P =

0.58𝐻𝐻𝑗𝑗
𝑃𝑃𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝑃𝑃𝑠𝑠𝑜𝑜𝑙𝑙

1.0  

 

Tsoil (˚C) was the temperature of the soil, SW the water content (mm H2O) of the soil layer, and 

FC the water content at field capacity. The rate constants were user defined while the parameters 

were directly calculated; γT and γw have minimum values of 0.1 and 0.05, respectively. 

Phosphorous dynamics were structured similarly to nitrogen, but was only mentioned here 

because γn was dependent on the fresh organic phosphorous (Porg,frsh) and soluble inorganic 

phosphorus (i.e. phosphate: HnPO4
3-n). The overall decomposition of plant residue into humus 

was a function of a decay rate constant, δR: 

Equation 2-38 𝛿𝛿𝑅𝑅 =  𝛽𝛽𝑅𝑅𝛾𝛾𝑛𝑛�𝛾𝛾𝑇𝑇𝛾𝛾𝑔𝑔 
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The change in active organic nitrogen occurred through transfer from stable organic nitrogen and 

the decomposition of fresh organic nitrogen. Norg,fert,j+1 refers to the addition of active organic 

nitrogen due to percolation from the layer immediately above. 

Equation 2-39  
Δ𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡 =  𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑡𝑡𝑙𝑙𝑏𝑏 − 𝛽𝛽𝑠𝑠𝑡𝑡𝑙𝑙𝑏𝑏,𝑙𝑙𝑎𝑎𝑡𝑡𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔 �1 − 1

𝑠𝑠𝑁𝑁,𝑡𝑡𝑎𝑎𝑡𝑡
� +

 0.2𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛿𝛿𝑅𝑅 + 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡,𝑗𝑗+1

  

Inorganic Nitrogen 

Initial soil NO3
-
 could be user defined or calculated as a function of soil layer depth z: 

 

Equation 2-40 𝐶𝐶𝑂𝑂3−𝑠𝑠 =  7𝛿𝛿−
𝑧𝑧

1000 

Atmospheric deposition occurred only for the top 10 mm layer of the soil and expressed as: 

Equation 2-41 𝐶𝐶𝐻𝐻4+𝑗𝑗=0
𝑙𝑙𝑡𝑡𝑚𝑚 =  0.01𝐶𝐶𝐻𝐻4+𝑃𝑃𝑃𝑃𝑖𝑖 + 𝐶𝐶𝐻𝐻4+𝑑𝑑𝑠𝑠𝑑𝑑 

Equation 2-42 𝐶𝐶𝑂𝑂3−𝑗𝑗=0
𝑙𝑙𝑡𝑡𝑚𝑚 =  0.01𝐶𝐶𝑂𝑂3−𝑃𝑃𝑃𝑃𝑖𝑖 + 𝐶𝐶𝑂𝑂3−𝑑𝑑𝑠𝑠𝑑𝑑 

Pi was the daily precipitation (mm H2O), NH4
+

p the rainfall ammonium concentration (mg·L-1), 

NO3
-
,P the rainfall nitrate concentration (mg·L-1), ), NH4

+
dry the ammonium dry deposition rate, 

and NO3
-
,dry the nitrate dry deposition rate. The inorganic nitrogen from the atmosphere could be 

considered fertilizer input upon reaching the soil surface. 

Nitrification and denitrification processes were dependent on the soil denitrification rate 

coefficient (βden), temperature parameter (ηT), water content parameter (ηw), volatilization depth 

parameter (ηz), and the volatilization cation exchange parameter that was set to a constant value 

of ηc = 0.15. 
 

Equation 2-43 𝜂𝜂𝑇𝑇 = 0.41
𝑇𝑇𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 − 5

10
if 𝑇𝑇𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 > 5 
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Equation 2-44 𝜂𝜂𝑔𝑔 = �
𝑆𝑆𝑊𝑊 −𝑊𝑊𝑃𝑃

0.25(𝐹𝐹𝐶𝐶 −𝑊𝑊𝑃𝑃) if 𝑆𝑆𝑊𝑊 < 0.25𝐹𝐹𝐶𝐶 − .75𝑊𝑊𝑃𝑃

1.0 otherwise
 

Equation 2-45 𝜂𝜂𝑧𝑧 = 1 −
𝑧𝑧𝑚𝑚,𝑗𝑗

𝑧𝑧𝑚𝑚,𝑗𝑗 + 𝛿𝛿4.706−0.305𝑧𝑧𝑚𝑚,𝑗𝑗 

WP was the wilting point water content and zm,i was the depth from the surface to the 

middle of the j’th layer. The total amount of ammonium gained or lost for the j'th soil layer was 

calculated as: 
 

Equation 2-46 Δ𝐶𝐶𝐻𝐻4+𝑠𝑠 = 𝐶𝐶𝐻𝐻44+𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡,𝑗𝑗+1 − 𝐶𝐶𝐻𝐻4+(1 − 𝛿𝛿𝜂𝜂𝑇𝑇(𝜂𝜂𝑔𝑔−𝜂𝜂𝑧𝑧𝜂𝜂𝑎𝑎))  

The second term accounted for both volatilization and nitrification. To partition that term into 

their respective loss processes, two additional parameters were needed: the estimated fractions 

lost to volatilization (fvol) and nitrification (fnit). 

Equation 2-47 𝑓𝑓𝑛𝑛𝑖𝑖𝑡𝑡 =  1 − 𝛿𝛿−𝜂𝜂𝑇𝑇𝜂𝜂𝑔𝑔   

Equation 2-48 𝑓𝑓𝑡𝑡𝑜𝑜𝑙𝑙 =  1 − 𝛿𝛿−𝜂𝜂𝑇𝑇𝜂𝜂𝑧𝑧𝜂𝜂𝑎𝑎   

The ammonium lost to nitrification (ΔNH4
+

nit) and volatilization (ΔNH4
+

vol) were calculated as:  

Equation 2-49 𝐶𝐶𝐻𝐻4+𝑛𝑛𝑖𝑖𝑡𝑡 =
𝑓𝑓𝑛𝑛𝑖𝑖𝑡𝑡

𝑓𝑓𝑛𝑛𝑖𝑖𝑡𝑡 + 𝑓𝑓𝑡𝑡𝑜𝑜𝑙𝑙
⋅ 𝐶𝐶𝐻𝐻4+(1 − 𝛿𝛿𝜂𝜂𝑇𝑇(𝜂𝜂𝑔𝑔−𝜂𝜂𝑧𝑧𝜂𝜂𝑎𝑎)) 

Equation 2-50 𝐶𝐶𝐻𝐻4+𝑡𝑡𝑜𝑜𝑙𝑙 =
𝑓𝑓𝑡𝑡𝑜𝑜𝑙𝑙

𝑓𝑓𝑛𝑛𝑖𝑖𝑡𝑡 + 𝑓𝑓𝑡𝑡𝑜𝑜𝑙𝑙
⋅ 𝐶𝐶𝐻𝐻4+(1 − 𝛿𝛿𝜂𝜂𝑇𝑇(𝜂𝜂𝑔𝑔−𝜂𝜂𝑧𝑧𝜂𝜂𝑎𝑎)) 

Denitrification occurred during anoxic conditions in the soil when the water content increased at 

the expense of air. The point at which the soil water content reached a user defined threshold 

value (γw,t) to allow denitrification was relative to the water content parameter (γw).  Nitrate lost 

(NO3
-
den, kg·ha-1) to denitrification was calculated as: 

 

Equation 2-51 𝐶𝐶𝑂𝑂3−𝑑𝑑𝑠𝑠𝑛𝑛  = 𝐶𝐶𝑂𝑂3−�1 − 𝛿𝛿−𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝛾𝛾𝑇𝑇𝐶𝐶𝑠𝑠𝑡𝑡𝑔𝑔� if γw ≥ 𝛾𝛾𝑔𝑔,𝑡𝑡  
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SWAT simulated the soil-to-surface movement of nitrate (NO3
-
evap, kg·ha-1) as: 

Equation 2-52 𝐶𝐶𝑂𝑂3−𝑠𝑠𝑡𝑡𝑙𝑙𝑠𝑠  = 0.1𝐶𝐶𝑂𝑂3−𝑖𝑖=1
𝐸𝐸𝑡𝑡,𝑖𝑖=1
𝑆𝑆𝑊𝑊𝑖𝑖=1

   

NO3
-
i=1 was the nitrate content in the first soil layer (kg N·ha-1), Ea,i=1 the  evaporation of water 

from the first soil layer (mm H2O), and SWi=1 the soil water content in the first layer (mm H2O). 

With the omission of soil-to-surface movement because it applies only to the first soil layer, the 

general the nitrate balance in a soil layer for was: 

Equation 2-53 
Δ𝐶𝐶𝑂𝑂3−s = 𝐶𝐶𝑂𝑂3−𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡,𝑗𝑗+1 +  0.8𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛿𝛿𝑛𝑛 + 𝛽𝛽𝑚𝑚𝑖𝑖𝑛𝑛𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡�𝛾𝛾𝑇𝑇𝛾𝛾𝑔𝑔

 + 𝐶𝐶𝐻𝐻4+𝑛𝑛𝑖𝑖𝑡𝑡 − 𝐶𝐶𝑂𝑂3−𝑠𝑠𝑙𝑙𝑙𝑙𝑛𝑛𝑡𝑡 − 𝐶𝐶𝑂𝑂3−𝑔𝑔
 

The first term, NO3
-
fert,i+1, accounted for fertilizer from the upper layers. The second and third 

term accounted for the mineralization of fresh and active organic nitrogen, respectively. NO3
-
plant 

was the plant uptake of nitrogen, which was a function of the crop or land cover at the surface, 

plant growth stage, root depth, and plant health. NO3
-
w was the sum of nitrate transported with 

water in the soil column whose processes are described in the Nitrogen Transport subsection. 

Nitrogen Transport  

Nitrate 

 Nitrate may move with surface runoff (NO3
-
surf), lateral flow (NO3

-
lat,j), or percolation 

(NO3
-
perc,j). Nitrate in tile flow was equivalent to that of lateral. The amount of water (wmobile) that 

nitrate moved with was different for the surface and the lower soil layers: 

Equation 2-54 𝑤𝑤𝑚𝑚𝑜𝑜𝑏𝑏𝑖𝑖𝑙𝑙𝑠𝑠 = �
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑙𝑙𝑙𝑙𝑡𝑡,𝑗𝑗 + 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎,𝑗𝑗 if 𝑗𝑗 = 0
𝑄𝑄𝑙𝑙𝑙𝑙𝑡𝑡𝑗𝑗 + 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎,𝑗𝑗 if 𝑗𝑗 > 0  

In units of mm H2O, Qsurf was the surface runoff, Qlat,j was the lateral flow for the j’th layer, 

wperc,j was percolation from the j’th layer. The concentration of transportable nitrate (NO3
-
t, kg 

N·mm-1) in these three processes was calculated as: 

25 
 



www.manaraa.com

  

Equation 2-55 𝐶𝐶𝑂𝑂3−𝑡𝑡 =
𝑁𝑁𝑂𝑂3−𝑗𝑗�1−𝑠𝑠

−𝑔𝑔𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠𝑑𝑑
𝑆𝑆𝑆𝑆𝑇𝑇𝑗𝑗(1−𝜃𝜃𝑑𝑑)�

𝑔𝑔𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠𝑑𝑑
  

NO3
-
j was the amount of nitrate in the j’th soil layer (kg N·ha-1), θe the fraction of porosity from 

which anions are excluded, and SATj the saturated water content in the j’th layer (mm H2O). The 

nitrate removed from the surface runoff and lateral flow was calculated using a nitrate 

percolation coefficient (βNO3); lateral flow nitrate depended on soil depth. Nitrate may transport 

with percolation (NO3
-
perc,j, kg N·ha-1). 

Equation 2-56  𝐶𝐶𝑂𝑂3−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛽𝛽𝑁𝑁𝑂𝑂3𝐶𝐶𝑂𝑂3−𝑡𝑡𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Equation 2-57 𝐶𝐶𝑂𝑂3−𝑙𝑙𝑙𝑙𝑡𝑡,𝑗𝑗 = �
𝛽𝛽𝑁𝑁𝑂𝑂3𝐶𝐶𝑂𝑂3−𝑡𝑡𝑄𝑄𝑙𝑙𝑙𝑙𝑡𝑡,𝑗𝑗 if 𝑗𝑗 = 0
𝐶𝐶𝑂𝑂3−𝑡𝑡𝑄𝑄𝑙𝑙𝑙𝑙𝑡𝑡,𝑗𝑗 if 𝑗𝑗 > 0    

Equation 2-58 𝐶𝐶𝑂𝑂3−𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎,𝑗𝑗 = 𝐶𝐶𝑂𝑂3−𝑡𝑡𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎,𝑗𝑗     

 Nitrate may enter the groundwater systems, recharging into either the shallow or deep 

aquifer or moving out of the groundwater system via revap or groundwater flow into the main 

channel. Nitrate may travel with recharge on the i'th day (NO3
-
rchrg,i, kg N·ha-1) and followed 

Equation 2-21 for shallow aquifer water recharge where NO3
-
seep was the nitrate exiting the 

lowest soil layer: 

Equation 2-59 𝐶𝐶𝑂𝑂3−𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑖𝑖 = 𝐶𝐶𝑂𝑂3−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �1 − 𝛿𝛿
−1
𝛿𝛿𝑔𝑔𝑔𝑔� + 𝐶𝐶𝑂𝑂3−𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑖𝑖−1𝛿𝛿

−1
𝛿𝛿𝑔𝑔𝑔𝑔  

Once in the shallow aquifer nitrate movement followed the general equation: 

Equation 2-60 𝐶𝐶𝑂𝑂3−𝑚𝑚 = 𝑥𝑥
𝐶𝐶𝑂𝑂3−𝑠𝑠ℎ,𝑖𝑖−1 + 𝐶𝐶𝑂𝑂3−𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑖𝑖

𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑖𝑖 + 𝑄𝑄𝑔𝑔𝑔𝑔,𝑖𝑖 + 𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠,𝑖𝑖 + 𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑑𝑑𝑠𝑠,𝑖𝑖
 | 𝑥𝑥 ∈ (𝑎𝑎𝑎𝑎𝑠𝑠ℎ,𝑄𝑄𝑔𝑔𝑔𝑔,𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠,𝑤𝑤𝑠𝑠𝑎𝑎ℎ𝑠𝑠𝑔𝑔,𝑑𝑑𝑠𝑠) 

The placeholder x denoted a part of the groundwater system: aqsh for shallow aquifer, Qgw for 

groundwater flow into the stream, wrvp for revap into the upper layers, and wrchrg,dp for recharge 
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to the deep aquifer. Nitrate removal in the shallow aquifer due to microbial processes was 

modeled as a first order decay: 

Equation 2-61 𝐶𝐶𝑂𝑂3−𝑠𝑠ℎ,𝑡𝑡 = 𝐶𝐶𝑂𝑂3−𝑠𝑠ℎ,0𝛿𝛿
−𝑘𝑘𝑁𝑁𝑁𝑁3,𝑠𝑠ℎ𝑡𝑡   |  𝑘𝑘𝑁𝑁𝑂𝑂3,𝑠𝑠ℎ =

0.693
𝜆𝜆1

2�  ,𝑁𝑁𝑂𝑂3,𝑠𝑠ℎ
 

NO3
-
sh,t was the nitrate content (kg N·ha-1) at time t, NO3

-
sh,0 the initial nitrate content, kNO3,sh the 

decay rate constant (day-1), and λ½,NO3,sh a user-defined half-life of nitrate in the shallow aquifer 

(days). Of these groundwater components, only the groundwater flow directly contributed to in-

stream nitrate; the aquifers are sinks and revap indirectly affected the streams by adding to the 

nitrate pool in the soil layers for lateral flow or surface runoff. 

Organic Nitrogen 

The concentration of organic nitrogen on the soil surface (Norg,conc) layer was calculated 

as the sum of the surface active, fresh, and stable organic nitrogen pools (kg·ha-1) divided by the 

first soil layer’s bulk density (ρb,j=1) and surface depth (z0 = 10mm): 

Equation 2-62 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑎𝑎𝑜𝑜𝑛𝑛𝑎𝑎 = 100
𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠ℎ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑡𝑡𝑙𝑙𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜌𝜌𝑏𝑏,𝑗𝑗=1𝑧𝑧0
 

Organic nitrogen may enter the streams as a part of sediment loading in soil erosion in surface 

runoff (Norg,surf) and calculated with a loading function (McElroy et al., 1976): 

Equation 2-63 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10−3 ⋅ 𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑎𝑎𝑜𝑜𝑛𝑛𝑎𝑎εN:sed
𝑀𝑀𝑠𝑠𝑠𝑠𝑑𝑑

𝐴𝐴𝐻𝐻𝑅𝑅𝐻𝐻
 

Msed was the mass of sediment yield on a given day, AHRU the area of the HRU (ha), and εN:sed 

the nitrogen enrichment ratio. The enrichment ratio was calculated as (Menzel, 1980): 

Equation 2-64 εN:sed = 0.78�
𝑀𝑀𝑠𝑠𝑠𝑠𝑑𝑑

10𝐴𝐴𝐻𝐻𝑅𝑅𝐻𝐻𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�
−.2468
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In-Stream Hydrology 

SWAT and QUAL2E modeled the channel cross-section as a trapezoid and the 

dimensions varied by reach and subbasin. These values were derived from the input data pre-

processing steps detailed in Chapter 3. The stream flow rate (Qs) and velocity were calculated 

with Manning’s equation for open channel flow: 

Equation 2-65 𝑄𝑄𝑠𝑠 =
𝐻𝐻
2
3𝑆𝑆

1
2

𝐼𝐼
 

A was the cross-sectional area, R the hydraulic radius (the ratio of the cross-sectional area and 

wetted perimeter), S the energy slope, and n the roughness coefficient.  

 Water (Vrch, m3) entering the stream network from a given HRU was based on a balance: 

Equation 2-66 𝑉𝑉𝑠𝑠𝑎𝑎ℎ = 10𝐴𝐴𝐻𝐻𝑅𝑅𝐻𝐻�𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + Σ𝑗𝑗𝑄𝑄𝑙𝑙𝑙𝑙𝑡𝑡 + 𝑄𝑄𝑔𝑔𝑔𝑔 + 𝑄𝑄𝑡𝑡𝑖𝑖𝑙𝑙𝑠𝑠� − 𝑉𝑉𝑖𝑖𝑠𝑠𝑠𝑠 

AHRU was the area of the HRU (ha). In units of mm H2O, Qsurf was the surface runoff (Equation 

2-3), Qlat the lateral flow (Equation 2-17), Qgw the groundwater flow from the shallow aquifer 

(Equation 2-25), Qtile the flow from tile drains (Equation 2-18), and Virr the volume withdrawn 

for irrigation. Irrigation was not included in the ICRB model development. Variable storage 

method simulated water routing between reaches, a method based on the continuity equation for 

a given stream reach segment (Williams, 1969):  
 

Equation 2-67 Δ𝑉𝑉𝑠𝑠𝑎𝑎ℎ =  𝑉𝑉𝑖𝑖𝑛𝑛 − 𝑉𝑉𝑜𝑜𝑠𝑠𝑡𝑡 = Δ𝑡𝑡 �
𝑄𝑄𝑖𝑖𝑛𝑛,1 + 𝑄𝑄𝑖𝑖𝑛𝑛,2

2
−
𝑄𝑄𝑜𝑜𝑠𝑠𝑡𝑡,1 + 𝑄𝑄𝑜𝑜𝑠𝑠𝑡𝑡,2

2
� 

V was the volume in the reach, Δt the time step, Qin,1 and Qin,2 the inflow at the beginning and 

end of the time step, respectively, and Qout,1 and Qout,2  were the outflow at the beginning and end 

of the time step, respectively. 
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In-Stream Nitrogen 

The outputs from the land module plus nitrogen from a previous stream reach were the 

initial values for the in-stream nitrogen that had four pools: organic nitrogen, ammonium, nitrite, 

and nitrate (Figure 2-4b). The in-stream phase incorporated the QUAL2E water quality model 

managed by the US Environmental Protection Agency (Chapra et al., 2006), Rate constants and 

coefficients were relative to a water temperature (Tw) of 20°C and SWAT adjusted these 

numbers with changes in temperature. 

Organic nitrogen increased from the conversion from algae death and decreased through 

hydrolysis to ammonium and settling into the sediment phase:  

Equation 2-68 Δ𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑔𝑔

Δ𝑡𝑡
= 𝛼𝛼𝑁𝑁𝜌𝜌𝑙𝑙𝐴𝐴𝐴𝐴𝑔𝑔𝑎𝑎𝛿𝛿 − 𝛽𝛽1𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑔𝑔 − 𝜎𝜎𝑠𝑠,𝑁𝑁𝑠𝑠𝑡𝑡𝑔𝑔𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔,𝑔𝑔 

αN was the fraction of algal biomass that is nitrogen, ρa was the local algal algal rate (hr-1), β1 

was the rate constant for hydrolysis of organic nitrogen to ammonium (hr-1), and σS,Norg was the 

settling rate coefficient for organic nitrogen (hr-1). Adjusted to water temperature, the rate 

coefficients or constants were: 

Equation 2-69  𝛽𝛽1 = 𝛽𝛽1,𝑇𝑇𝑔𝑔=201.047𝑇𝑇𝑔𝑔−20 

Equation 2-70 𝜎𝜎𝑠𝑠,𝑁𝑁𝑠𝑠𝑡𝑡𝑔𝑔 =  𝜎𝜎𝑠𝑠,𝑁𝑁𝑠𝑠𝑡𝑡𝑔𝑔,𝑇𝑇𝑔𝑔=201.024𝑇𝑇𝑔𝑔−20    

Ammonium nitrogen increased from hydrolysis of organic nitrogen and sediment or 

benthic diffusion. Ammonium decreased with assimilation by algae and nitrification. 

Equation 2-71 
Δ𝐶𝐶𝐻𝐻4+𝑔𝑔
Δ𝑡𝑡

= 𝛽𝛽1𝐶𝐶𝑜𝑜𝑠𝑠𝑔𝑔 − 𝛽𝛽2𝐶𝐶𝐻𝐻4+ −
𝜎𝜎𝑆𝑆,𝑁𝑁𝐻𝐻4+

𝑧𝑧𝑠𝑠𝑎𝑎ℎ
− 𝑓𝑓𝑁𝑁𝐻𝐻4+𝛼𝛼𝑁𝑁𝜇𝜇𝑙𝑙𝐴𝐴𝐴𝐴𝑔𝑔𝑎𝑎𝛿𝛿 

Equation 2-72 𝛽𝛽2 = 𝛽𝛽2,𝑇𝑇𝑔𝑔=20(1 − 𝛿𝛿−0.6𝑂𝑂2) ⋅ 1.083𝑇𝑇𝑔𝑔−20 

Equation 2-73 𝜎𝜎𝑠𝑠,𝑁𝑁𝐻𝐻4+ = 𝜎𝜎𝑠𝑠,𝑁𝑁𝐻𝐻4+,𝑇𝑇𝑔𝑔=201.074𝑇𝑇𝑔𝑔−20 
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β2 was the rate constant for biological oxidation of ammonium to nitrite (hr-1), σS,NH4+ the 

sediment source rate for ammonium (mg N∙m-2 ∙day-1), zrch the water depth of the stream reach, 

fNH4+ the fraction of algal nitrogen uptake from the ammonium pool, and μa the local rate of algae 

growth. O2 was the dissolved oxygen concentration in the stream (mg·L-1). Nitrite increased with 

ammonium oxidation and decreased with oxidation of nitrite to nitrate with β3 as the rate 

constant for biological oxidation of nitrite to nitrate (hr-1): 

Equation 2-74 Δ𝐶𝐶𝑂𝑂2−

Δ𝑡𝑡
= 𝛽𝛽2𝐶𝐶𝐻𝐻4+ − 𝛽𝛽3𝐶𝐶𝑂𝑂2− 

Equation 2-75 𝛽𝛽3 = 𝛽𝛽3,𝑇𝑇𝑔𝑔=20(1 − 𝛿𝛿−0.6𝑂𝑂2) ⋅ 1.047𝑇𝑇𝑔𝑔−20 

 

Nitrate increased from oxidation of nitrite and lost through algal uptake: 

Equation 2-76 Δ𝐶𝐶𝑂𝑂3−

Δ𝑡𝑡
= 𝛽𝛽3𝐶𝐶𝑂𝑂2− − �1 − 𝑓𝑓𝑁𝑁𝐻𝐻4+�𝛼𝛼𝑁𝑁𝜇𝜇𝑙𝑙𝐴𝐴𝐴𝐴𝑔𝑔𝑎𝑎𝛿𝛿 

SWAT simulated algae growth and the process featured prominently in the in-stream nitrogen 

dynamics, specifically as the only sink for nitrate: 

Equation 2-77 
Δ𝐴𝐴𝐴𝐴𝑔𝑔𝑎𝑎𝛿𝛿
Δ𝑡𝑡

= 𝐴𝐴𝐴𝐴𝑔𝑔𝑎𝑎𝛿𝛿 �𝜇𝜇𝑙𝑙 − 𝜌𝜌𝑙𝑙 −
𝜎𝜎𝑠𝑠,𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑠𝑠

𝑧𝑧𝑠𝑠𝑎𝑎ℎ
� 

σS was the local settling algal settling rate (m∙day-1) and all other variables were defined 

previously. 

Literature Review 

The use of SWAT was not new to hydrological studies of the ICRB and other Iowan 

watersheds. One of the first SWAT studies inside the ICRB was the simulation of alternative 

management scenarios in Walnut Creek (Vaché et al., 2002; Santelman et al. 2004) and their 

impacts on surface water discharge, sediment and nitrate loads. Walnut Creek was a small 

watershed (51.3 km2), but the initial scenario-driven studies showed that only widespread 
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adoption of a best management practices such as riparian buffers, filter strips, and engineered 

wetlands would result in a substantial (>50%) decrease in nitrate export. The first variety of 

SWAT studies in the ICRB was scenario driven where a watershed was subjected to alternative 

land use or management scenarios to assess effects on non-point source pollution from 

agriculture. 

The second variety of SWAT studies in the ICRB was methodological, often involving 

watersheds larger than Walnut Creek. These studies manipulated model development to evaluate 

SWAT’s robustness at different spatial configurations (Jha et al., 2004) or sensitivity to input 

data. The sensitivity to input data was especially important considering one of SWAT’s strength 

lies in long-term simulations. During a model calibration, the initial inputs such as land use 

should change lest the model results be misinterpreted (Schilling et al., 2008). Methodological 

studies more specific to the ICRB were those evaluating relevant and newer subroutines such as 

tile flow (Moriasi et al., 2012). For example the 775 km2 South Fork Iowa River within the ICRB 

had approximately 80% tile drain coverage (Green et al., 2006). 

The more recent scenario studies have now shifted to a climate change focus 

(Chattopadhyay & Jha, 2015), the incorporation of extra-watershed factors such as crop prices 

(Hendricks et al., 2014), and trade-off studies between land use and water quality or other 

parameters (Yaeger et al., 2014). As SWAT matured the methodological studies explored 

modification through coupling with other models (Wu & Liu, 2014). For watersheds that have 

experienced successful SWAT implementations, the attention focused on improving model 

performance to more accurately and precisely simulate observed conditions. These studies 

looked at alternative calibration procedures to reduce uncertainty and aid in calibration (Harmel 

et al., 2010). The examples given explicitly related to the ICRB and other watersheds in Iowa, 

but the trends were literature-wide: improve calibration and simulate future scenarios. The need 

for additional calibration techniques may only grow, especially because SWAT branched out 

into running more varied and complex scenarios in climate and land use change. 
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Table 2-1 Summary statistics for eight USGS gage stations for stream discharge in units of 
m3∙s-1 

 

Gage Station Minimum 25% Median Mean 75% Maximum 

Charles City 1.69 6.82 11.5 23.1 24.2 864 

New Providence 0.003 0.396 1.76 5.04 5.15 167 

Marshalltown 0.133 7.16 16.6 33.2 39.6 632 

Cedar Rapids 3.96 49.3 87.5 150 176 3908 

Iowa City 1.39 17.8 42.2 73.5 105.9 1158 

Old Man’s Creek 0.011 0.538 1.76 4.66 4.39 249 

Lone Tree 1.95 22.9 56.1 97.8 139 1560 

Wapello 13.0 96.3 186 289 368 4870 
 

 
 
 
Table 2-2 Summary statistics for nitrate plus nitrite loading (metric tons N∙day-1) at Cedar 

Rapids in the Cedar River Basin and Wapello gage  in the Iowa River Basin 
 

Gage Station Minimum 25% Median Mean 75% Maximum 

Cedar Rapids 0.134 19.8 93.1 155 199 1620 

Wapello 0.452 5.59 93.4 214 313 2882 

 

 
 
 
Table 2-3 Summary statistics for nitrate plus nitrite concentrations (mg∙L-1 as N) at Cedar 

Rapids in the Cedar River Basin and Wapello gage station on the Iowa River 
Basin 

 

Gage Station Minimum 25% Median Mean 75% Maximum  

Cedar Rapids 0.1 2.97 6.03 5.81 8.16 18.5  

Wapello 0.1 1.03 3.62 4.26 6.71 15.4  
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Table 2-4 List of variables for computation of soil and in-stream hydrology 
 
Symbol Definition Units Derivation 

aqsh
 water in shallow aquifer mm H2O calculated 

aqsh,t,gw 
threshold water content in shallow aquifer before 
groundwater can flow mm H2O user defined 

aqsh,t,r 
threshold water content in shallow aquifer before revap can 
occur mm H2O user defined 

AWCj plant-available water capacity fraction database 
CN curve number for surface runoff mm H2O database 
ET evapotranspiration mm H2O calculated 
FCj field capacity of layer j fraction calculated 
Ia initial surface soil water mm H2O calculated 
Ksat,j saturated hydraulic conductivity for layer j mm·hr-1 database 
n Manning’s roughness coefficient unitless user defined 
Pi precipitation on day i mm H2O user defined 
Qgw groundwater flow into streams mm H2O calculated 

Qlat,j lateral flow from layer j mm 
H2O·day-1 calculated 

Qs flow in channel from Manning’s equation m3·s-1 calculated 
Qsurf surface runoff mm H2O calculated 
Qtile flow from subsurface tile drains mm H2O calculated 
S maximum soil moisture retention mm H2O calculated 
SWj soil water content at layer j mm H2O calculated 
Vrch water volume in a reach  m3 calculated 
wperc,j percolation from layer j mm H2O calculated 
wrchrg recharge into shallow deep aquifer mm H2O calculated 
wrvp upward, subsurface diffusion of water from saturated zone mm H2O calculated 
wseep percolation out of soil profile mm H2O calculated 
wmobile amount of water that can carry nitrate out of the soil column mm H2O calculated 
zimp depth to impervious layer mm user defined 
zw height of the perched water table mm calculated 
αgw baseflow recession constant day-1 user defined 
βdp deep aquifer recharge partitioning coefficient fraction user defined 
βrvp

 revap coefficient unitless user defined 
δgw groundwater delay time day user defined 
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Table 2-5 List of variables for computation of soil nitrogen dynamics 
 
Symbol Definition Units Derivation 

Corg soil organic carbon in layer j % database 
fN,act fraction of active organic nitrogen in nitrogenous humus fraction calculated 
fnit fraction of ammonium lost to nitrification fraction calculated 
fvol fraction of ammonium lost to volatilization fraction calculated 
Norg,actv active organic nitrogen mg·kg-1 calculated 
Norg,frsh nitrogenous plant residue mg·kg-1 calculated 
Norg,stab stable organic nitrogen mg·kg-1 calculated 
Norg,s nitrogenous humus mg·kg-1 calculated 
NH4

+
s soil ammonium mg·kg-1 calculated 

NH4
+

p ammonium concentration in rainfall mg·L-1 user defined 
NO3

-
p nitrate concentration in rainfall mg·L-1 user defined 

NO3
-
den nitrate loss due to denitrification kg·ha-1 calculated 

NO3
-
p nitrate concentration in rainfall mg·L-1 user defined 

NO3
-
s soil nitrate mg·kg-1 calculated 

Rj total plant residue in layer j kg·ha-1 calculated 
Rsurf total plant residue at surface kg·ha-1 calculated 

βstab,actv transfer rate between stable and active organic nitrogen unitless constant  
(10-5) 

βmin organic nitrogen mineralization constant  unitless user defined 

βR 
crop-specific rate constant for plant residue decomposition 
to humus unitless database 

βden Soil denitrification rate coefficient unitless user defined 
γT soil temperature parameter for nutrient dynamics unitless calculated 
γw soil water parameter for nutrient dynamics unitless calculated 
γn plant residue composition parameter unitless calculated 
δR plant residue to humus decay rate constant unitless calculated 
εC:N carbon to nitrogen ratio in humus ratio calculated 
εC:P carbon to phosphorous ratio in humus ratio calculated 
ηT Nitrification/volatilization temperature parameter unitless calculated 
ηw Nitrification soil water parameter unitless calculated 
ηz ammonium volatilization depth parameter unitless calculated 
ηc soil cation exchange capacity unitless constant (0.15) 
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Table 2-6 List of variables for computation of in-stream nitrogen dynamics 
 
Symbol Definition Units Derivation 

Algae in-stream algae concentration mg·L-1 calculated 
fNH4+ fraction of algal nitrogen uptake from the ammonium pool fraction user defined 
Norg,w in-stream organic nitrogen concentration mg N·L-1 calculated 
NH4

+
w in-stream ammonium concentration mg N·L-1 calculated 

NO3
-
w in-stream nitrite concentration mg N·L-1 calculated 

O2 dissolved oxygen mg ·L-1 calculated 
Tw water temperature °C calculated 
zrch water depth in the reach m database 
αN nitrogenous algal biomass fraction fraction user defined 
β1 organic nitrogen hydrolysis rate constant hr-1 calculated 
β1,20 organic nitrogen hydrolysis rate constant at 20°C hr_1 user defined 
β2 rate constant for biological oxidation of NH4

+ to NO2
- hr-1 calculated 

β2,20 
rate constant for biological oxidation of NH4

+ to NO2 at 
20°C hr_1 user defined 

β3 rate constant for biological oxidation of NO2
- to NO3

- hr-1 calculated 

β3,20 
rate constant for biological oxidation of NO2

- to NO3
- at 

20°C hr_1 user defined 

μa algae growth rate hr_1 calculated 
ρa algae death rate hr_1 calculated 
σs,Norg settling rate coefficient for organic nitrogen hr_1 calculated 
σs,Norg,20 settling rate coefficient for organic nitrogen at 20°C hr_1 user defined 

σS,NH4+ sediment source rate for ammonium mg N∙m-2 

∙day-1 user defined 

𝜎𝜎𝑠𝑠,𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑠𝑠 settling rate for algae m∙day-1 calculated 
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Figure 2-1 Map of the Iowa-Cedar River basin, locations of the USGS gage stations and 

climate stations.  
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Figure 2-2 Computational diagram of SWAT 
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Figure 2-3 SWAT soil and stream water balance schematic  
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Figure 2-4 SWAT nitrogen dynamics for the (a) land phase and (b) in-stream phase. 
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CHAPTER 3: MODEL DEVELOPMENT, SENSITIVITY 
ANALYSIS, AND CALIBRATION 

Introduction 

SWAT required four general inputs: (1) elevation or surface geometry, (2) soil type and 

characteristics, (3) land use or cover, and (4) climatic and meteorological records. Aside from the 

climate datasets, the inputs were in the form of digital maps and geodatabases. Geodatabases 

contained data tied with spatial coordinates along with other properties such as geographic 

projection, spatial units, and associated metadata describing their source and development. The 

climatic data were not from geodatabases, but downloaded as comma delimited files (USDA, 

2010b) accompanied by a metadata text file with the stations’ geographic coordinates. 

The procedure for developing the SWAT model used a Geographic Information Science 

(GIS) approach through the application of the ArcSWAT extension for ESRI ArcGIS software 

(Winchell et al., 2009). The SWAT model itself was an executable compiled from the 

FORTRAN scientific programming language, but ArcSWAT provided all the necessary tools 

and databases to write and edit the initial input files. From the context of ArcSWAT, the main 

steps in developing the model were: (1) watershed delineation, (2) HRU definition, and (3) 

editing or adding details to suit the user’s purpose. The details in step (3) were specific land 

management operations such as timing of planting or tilling for crops and the land use update 

module. 

Input Data 

Surface Geography  

The surface features came from a Digital Elevation Model (DEM), sourced from the 

USGS National Elevation Dataset or NED (USGS, 2013). The NED had multiple resolutions and 

the resolution chosen for this model’s development was one arc-second, resulting in a pixel edge 

of approximately 30 meters at the ICRB’s geographical location (Gesh et al., 2002). The DEM 
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data had a raster grid format that was equivalent to images whose pixels have spatial coordinates 

and units; attribute tables for the pixels and metadata accompanied the raster datasets. The DEM 

was required for delineating the watershed, creating the reach network, and computing the 

subbasins’ surface characteristics. The calculated average slope grid was a necessary component 

in the HRU definition process. The slopes were binned into classes as HRU definition requires 

categorical variables. The slope class definition was arbitrary and given that Iowa lies in the 

Great Plains region of the United States, the slope classes were narrow and uniformly separated: 

0-2%, 2-4%, 4-6%, 6-8% and 8%+ grade. The percent area of the ICRB of these classes were 

46.8, 24.9, 13.0 6.6, and 8.7 percent, respectively. The higher slope classes were found mostly in 

the southern portion of ICRB and along the riparian zones. Figure 3-1 summarizes the slope class 

distribution. 

Soil Characteristics 

The USDA STATSGO2 (Soil Survey Staff, n.d.) is a broad-based inventory of soil types across 
the United States. The STATSGO2 database sub-divided types by state and 
further differentiated into 37 different soil series (Figure 3-2). As a map the soil 
types were irregular polygons whose attribute tables contained the soil taxonomy 
and their column/layer characteristics. The main and relevant characteristics to the 
watershed were listed in  

Table 3-2. Examples of these characteristics were number of soil layers, their depths, the 

total column depth, the particle size distribution (sand, silt, clay, rock) by layer, and soil organic 

carbon content by layer. ArcSWAT, a software extension for SWAT described in the Model 

Development subsection, incorporated the STATSGO database and transformed the attributes 

into input variables for SWAT. These attributes were the source of the “database” values in 

Table 2-4 through Table 2-6.  

For runoff calculations using the SCS curve number method, the soil taxa were binned 

into Hydrologic Soil Groups from A to D (Miller & White, 1998). Group A soils were primarily 

sand or sandy loam with high infiltration rates and low runoff potential. Group B soils were loam 

or silt loams with moderate infiltration and a moderate fine or moderate coarse texture. Group C 

soils were sandy clay loams with low infiltration rates when nearing water saturation and their 
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textures are moderately fine to fine. Group D soils were primarily clay types and had the highest 

runoff potential with frequent ponding due to a high and permanent water table. Hydrologic Soil 

Group B covered approximately 95.9 percent of the ICRB. Group A soils covered 2.7 percent 

cluster around riparian areas, especially for the Cedar River. Group C at 0.8 percent and Group D 

at 0.6 percent were found in the far north in the headwaters of ICRB. Table 3-1 summarizes the 

soil characteristics and their distribution. 

Land Use and Cover 

Land use and land cover (LULC) were the third component of the HRU definition 

(Figure 3-6), constituting the crops for agricultural land, types of urban land uses, and other land 

covers not specified. This dissertation utilized three LULC maps or datasets for model 

development: the Iowa Department of Natural Resources (DNR) (Iowa DNR, 2012), the Multi-

Resolution Land Characteristics Consortium’s (MRLC), National Land Cover Dataset (NLCD) 

(Fry et al., 2011), and the USDA’s Crop Data Layer (CDL) (USDA, 2012). The datasets had 

different spatial and temporal range and the combination of three help cover data gaps. To use 

any one particular dataset from one time point ignored the fact that land use changes. Conversion 

of native landscape to cultivation or urban development was one major example and crop 

rotation in agricultural land was another case that varies land use on a year-to-year and periodic 

basis. 

Each data source classified LULC differently and in varying degrees of detail. The 

NLCD was the most general with no classes for specific crops (Table 3-5), the Iowa DNR (Table 

3-4) included alfalfa, corn, and soybeans as they were important crops or cover crops for Iowa, 

and the CDL (Table 3-6) was the most extensive with every crop grown in the United States. 

Because of its breadth and similarity to SWAT’s LULC classes, the CDL’s classes were the basis 

for the LULC distribution in the model. SWAT had its own internal crop database (Table 3-3) 

for use in EPIC, the crop growth module. A “look-up table” was required to transform the LULC 
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classes in the data source to a SWAT equivalent; Table 3-3 through Table 3-6 were effectively 

the look-up tables for these data sources. 

The Iowa DNR provided the earliest land use map in 1985, despite the period of 

simulation starting in 1971. Because of the lack of digital and georeferenced datasets before 

1985 for Iowa, the model used the 1985 LULC map as a baseline for 1971 onwards until 1990 

when the next available dataset was available. SWAT2009 and SWAT2012 (the version used in 

this dissertation) allowed updating of land use by changing the proportion of area an HRU 

occupies in a subbasin. The Land Use Update subsection described the procedure to combine the 

three data sources into a composite LULC time-series. 

Climatic Data 

SWAT required the following climate or meteorological inputs: daily precipitation, 

minimum/maximum temperatures, relative humidity, wind speed, and solar radiation. The model 

contained the WXGEN weather generator module that created synthetic inputs given an existing 

record of at least twenty years (Sharpley & Williams, 1990). The weather generator was used for 

relative humidity, wind speed, and solar radiation while the temperature and precipitation data 

were observations originally sourced from the National Weather Service (NWS) Cooperative 

Observer Program (COOP), the Weather Bureau Army Navy (WBAN), and the Iowa 

Environmental Mesonet (IEM). 

The generated solar radiation was based on a weak stationary process whose covariance 

does not change with time (Matalas, 1967); the generated values were a function of the 

probability distribution of the recorded dataset and correlations between solar and daily 

minimum/maximum temperatures derived from 31 locations in the United States (Richardson, 

1982). The daily relative humidity was generated from a triangular probability distribution that 

relied on the monthly mean, maximum, minimum relative humidity, and a random number 

between 0.0 and 1.0 (Richardson, 1981).Wind speed was generated by an exponential function of 

the mean monthly wind speed and a random number between 0.0 and 1.0. Observed precipitation 
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and temperatures came from 48 stations in the COOP and WBAN networks covering the ICRB. 

Gaps existed in these records and the USDA Agricultural Research Service (ARS) used inverse 

distance weighted interpolation to fill in these gaps by referencing the nearest five stations that 

had datum for that day. The WBAN and COOP data covered the simulation period up to 2010 

and the values for 2011-2013 were exclusively estimates from the IEM. The IEM itself used the 

NWS climate data to estimate values for arbitrary geographic locations (Herzmann et al., 2013). 

Model Development 

Watershed Delineation 

ArcSWAT incorporated the ArcHydro extension for watershed delineation (Maidment, 

2002). Figure 3-4 diagrams the procedure for delineation. ArcHydro required the DEM as input 

data, a polygon or raster mask covering the study area, and a user-defined minimum catchment 

area threshold. The minimum catchment threshold determined the number of subbasins and 

reaches in the model in an automated delineation procedure (Jenson & Domingue, 1988). The 

catchment area defined for model development was 1% of the total watershed area or 327 km2; 

that catchment threshold and resulting subbasin output was sufficient for simulating the 

hydrologic and nitrogen processes in this dissertation (Jha et al., 2004).  

The delineation process followed the general workflow: (1) identify sinks or depression 

areas in the DEM, (2) fill the sinks, (3) calculate flow direction based on surrounding grids, (4) 

calculate flow accumulation based on flow direction, and (5) define the initial stream network 

and their segmentation using the mask, catchment area threshold, and flow accumulation, (6) add 

or remove outlets and (7) calculate subbasin and channel geometry to finalize the watershed 

polygon. Steps (1) and (2) were skipped because the DEMs from the NED have been pre-

processed or hydro-flattened. Raw or bare-earth DEMs contained the elevations of all points on 

the surface including that of stream obstructions, bridges, wave elevations, depending on the 

resolution of the DEM. Were the obstructions not flattened, the flow direction and accumulation 
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steps may not perform efficiently or may generate small catchments that do not drain to the 

subbasin or whole watershed outlet (Martz & Garbrecht, 1998). Steps 4 and 5 were performed 

for the grids within the bounding mask. Step 4 generated a raster grid of slope values that will be 

a necessary input dataset for the HRU Definition stage. 

The outlets added in step 6 represented the USGS gage stations; while the stations are 

geographic locations, each additional outlet created a subbasin and stream segment upstream of 

the point. The nutrient loads and water discharge exiting these points were the simulated values 

for comparison to the observed dataset during calibration. A gage station may be located near an 

existing outlet generated in step (5) and that nearby point was removed to avoid having a small 

subbasin between the existing point and the stream gage station. The subbasin would only 

increase computation time without providing any substantial granularity to the model. The 

removal of nearby existing points may not be preferred if they were confluences for large or 

otherwise independent upstream subbasins. Such removals may combine upstream subbasins 

into a larger subbasin, losing granularity.  

Step (6) also allowed the addition of point sources and pools that are similar to but do not 

function as subbasin outlets. Point sources added water discharge and constituents much like 

outlets from upstream reaches; however, the source of the loadings or discharge was not from the 

HRU but from an external user-supplied data, synthetic or observed. No point sources were 

added to the watershed for this dissertation. Pools or other small water bodies were abstracted in 

a way that resembles an HRU. SWAT defined and simulated three types of pools: reservoirs, 

perennial wetlands/ponds, and depression/potholes. They had no explicit spatial location like 

HRUs and received loadings and flow from some fraction of the subbasin area. The exception 

was a reservoir, which was placed on the main channel network and thus received inputs from all 

upstream subbasins. Volume in the pool may increase with precipitation and decrease through 

evaporation. A separate QUAL2E module simulated nutrient dynamics in the pools. 

Computationally, pools in SWAT functioned as HRUs without soil layers and can undergo 

water-phase nutrient dynamics and transformation. The discharge and mass loading, which exits 
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a pool, entered the stream for the subbasin in which the pool exists or downstream of the main 

stem in the case of reservoirs.  

Only one pool was added to the model: the Coralville Reservoir. This reservoir was a 

controlled water body with protocols that govern discharge external to surface geography; the 

protocols must be explicitly defined by the user. The Army Corps of Engineers Rock Island 

District managed this reservoir and provided some general protocols that correspond to the 

parameters that SWAT requires for reservoir simulation: the target storage in the reservoir for 

various times in the year and the reservoir volume until the water level reaches the principal and 

emergency spillway to avoid flooding of the area in proximity to the reservoir. The water level 

and target storage governed the discharge rate into the downstream reach. Table 3-7 summarizes 

the parameters for Coralville Reservoir. 

After the outlets/gages were removed/added and the reservoir defined, the last user step 

was manually defining the location of the whole watershed or terminal outlet for the basin. 

ArcHydro finished the delineation process by eliminating outlets and reaches that do not connect 

to the main stream network, resulting in the final stream network and reach segmentation. The 

boundaries of the subbasins were defined by the edge of first order grids of flow direction and 

accumulation. The remaining geometry such as channel width, depth, and average slope were 

also calculated using the DEM. Table A-1 in the Appendix and Figure 3-5 summarizes the 

resulting watershed and channel geometry of 67 subbasins and their corresponding reach 

channels.  

HRU Definition  

As explained before SWAT had two distinct, but linked computational phases on the 

land/subsurface and in the streams/ponds. The separation allowed the two phases to operate at 

different granularities. The model configuration for this dissertation was that of approximately 

HUC-8 scale subbasins with multiple HRUs per subbasin. The HRUs were a combination of 

three categorical variables: slope class, soil type, and LULC. The first step was to overlay the 
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four maps containing the subbasins, slope classes, soil types, and LULC into one map. For each 

subbasin the grid cells for each slope-soil-LULC combination were summed and divided by the 

total number of cells for the subbasin. This process abstracted HRUs as area fractions of the 

subbasin and two or more subbasins may contain identical HRUs. An HRU’s characteristics 

governed its hydrologic and nutrient processes, but its subbasin controlled where the outputs 

route. 

Given the numerous LULC and soil types in the basin, the number of unique HRUs for a 

given subbasin can be large, numbering in the thousands. Many of these HRUs’ area fractions 

can be very small, possibly on the scale of one grid cell. Because HRUs were not spatially 

explicit and depended on their area fraction, the contribution of such small individual HRUs 

were miniscule and well below the uncertainty of the observed dataset to which the model 

calibrated. Thus another step was the defining a threshold for the slope, soil, and LULC maps. If 

a class from these three variables falls below the area coverage of a given subbasin, ArcSWAT 

removed that HRU and distributed its area to the remaining HRUs proportional to their size. The 

threshold used for the model development was 5% for all three variables. 

For example HRU 1 in Subbasin 2 was defined as 8%+ slope, Lester soil type, and rye 

LULC. Rye covers less than 5 percent of Subbasin 2’s area and so ArcSWAT removed HRU 1 

from the subbasin. The removal process repeats for all such HRUs whose classes fell under 5 

percent. The sum area fraction of the removed HRUs were then distributed to the remaining 

HRUs proportional to their fractions: 

Equation 3-1 𝑓𝑓𝑗𝑗�𝐴𝐴𝑖𝑖

𝑛𝑛

𝑖𝑖

= Δ𝐴𝐴𝑗𝑗   |  𝑓𝑓𝑗𝑗 =
𝐴𝐴𝑗𝑗

∑ 𝐴𝐴𝑗𝑗𝑚𝑚
𝑗𝑗

 

Ai was the area of a removed HRU, Aj the area of the j’th remainder HRU, ΔAj the addition of 

area to the j’th remainder HRU, and the fj the fraction of HRU j over the sum of all remaining 

HRUs. 
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After this procedure the model shrank considerably, reducing the total number of HRUs 

from 26,841 to 2,538 HRUs. As each HRU consumed the equivalent amount of computation 

time, with small differences depending on the number of soil layers, the reduction allowed a 

multi-decadal simulation to be run on the order of minutes versus hours for a full model on a 

personal computer. The downside to the thresholding procedure was the loss of rare slope, soil, 

or LULC classes for a subbasin. Once a class was removed from the model, the user had two 

options: restart the HRU definition process or, after generating the SWAT input files, edit each 

HRU-level file to match the characteristics of the lost classes. To properly incorporate land use 

change into SWAT, two models were created, with and without threshold, or henceforth sparse 

and full models. The sparse model was used in calibration to reduce the simulation time, the 

number of simulations, and the number of input files or HRUs modified. The full model was 

used for simulating LULC or climate scenarios, using the calibrated parameters from the sparse 

model. The calibration modified parameters on a subbasin and reach scale, but the structure 

remains the same for both sparse and full models.  

Land Management 

The next step for the ArcSWAT mediated model development was the generation of solar 

radiation, relative humidity, and wind speed from ArcSWAT’s internal weather databases and 

formatting precipitation and temperature time-series into a form that the SWAT executable can 

read. With all inputs entered, ArcSWAT next generated a database containing the input files and 

model configuration with default values for all the modules. At this stage the user may edit the 

database to change parameters or specify management operations on HRUs. Most of these 

management operations focused heavily on agriculture: dates for planting, fertilizing, tilling, and 

harvest. In particular tiles were added to all corn and soybean HRUs at a depth of one meter 

below the surface. Areas with urban land cover may also have management options for activities 

such as street cleaning. The reservoir parameters may be modified or added here as well. The 

user had a wide array of options to pursue, depending on his or her objectives.  
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For the purpose of this dissertation, the management operations can be classified into two 

types: agricultural and non-agricultural. The agricultural lands include all crops—with the 

exception of alfalfa and pasture—and non-agriculture is everything else. All agricultural lands 

have the following sequence of management: (1) auto-fertilization, (2) planting/start of growing 

season, (3) harvest/end of growing season, and (4) generic fall tillage. Auto-fertilization was a 

subroutine that added nitrate salts as fertilizer whenever a crop undergoes nitrogen stress, i.e. the 

soil does not contain enough available nitrogen for optimal plant growth. The exact fertilizer 

setting in SWAT was “elemental nitrogen,” which was equivalent to the direct application of 

nitrate to the soil. The application quantity (kg/ha) and nitrogen stress depended on the crop and 

ArcSWAT provided a database for these values. The timing of these sequence was based on heat 

units. A heat unit (HU) was the accumulated temperature or growing degree days (GDD) above 

some base temperature (Tbase), usually 20°C, over time. 

Equation 3-2 𝐻𝐻𝑈𝑈 = 𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑇𝑇𝑚𝑚𝑙𝑙𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛

2
− 𝑇𝑇𝑏𝑏𝑙𝑙𝑠𝑠𝑠𝑠 

Tmax and Tmin are the maximum and minimum daily temperatures, respectively. If the average 

daily temperature is below 20°C, then no HU was added to the accumulated total for that day.  

Each crop had a HU value for which “maturity” is reached. Given a temperature time-

series, the model can schedule the operations by specifying them as fractions (HUSC) relative to 

the crop’s maturity HU. For example corn required 1500 HU to mature. The user scheduled the 

fertilization at 0.01 HUSC, planting at 0.15 HUSC, harvest at 1.2 HUSC and fall till at 1.5 

HUSC. Translating into a HU reference: fertilization began at 15 HU or when the accumulated 

mean daily temperature above 20°C was equal to 15 (nominally in units of °C). Planting began at 

225 HU, harvest at 1800 HU, and fall till at 2250 HU. The HU counter reset with the last 

operation for that year. For non-agricultural HRUs the only difference was the absence of 

fertilization and tillage. The harvest operation removed part of the plant biomass out of the 

system and allowed the remaining biomass to become plant residue for soil nutrient dynamics. 
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For unmanaged vegetation such as forests, the non-harvested biomass was considered to be the 

portion of the plant that does not die and stays dormant during the non-growing season. Urban 

HRUs were part of the non-agricultural land areas and typically had some grass or turf; because 

urban land area was relatively small in the ICRB, fertilizer application was not included in their 

management operations. Once the user specifies the management operations, ArcSWAT 

automatically generated SWAT input files into the proper format used by the SWAT executable. 

The simulation period was set by the user in a master control file. The simulation period cannot 

be longer than the observed data’s time period.  

Land Use Update 

The last step before properly starting the historical or control time-period simulation was 

the incorporation of historical land use change. SWAT simulated land use change as the 

modification of HRU area fraction within a subbasin. SWAT2009_LUC (Pai & Saraswat, 2011) 

was a tool developed at the University of Arkansas to process raster LULC grids into SWAT 

input files that redefined HRU area fraction over time. The tool used the watershed and subbasin 

boundaries to count the number of cells that an LULC occupies in a new map and assigned a new 

area fraction. This process was done separately for the sparse and full model. SWAT2009_LUC 

summed the grid cells with LULC that do not exist in the subbasin and reassigned them to the 

remaining HRUs, which was the same process for HRU definition with thresholds.  

The Iowa DNR had data for 1990, 1992, and 2002. The CDL had data continuously from 

2002 through the present year; however, the earlier maps were not complete and lacked large 

parts of the ICRB. The Iowa DNR maps themselves were incomplete and missed a small portion 

of the watershed that lies in Minnesota. Because the SWAT2009_LUC tool required inputs raster 

grids that included the boundary of the watershed, a methodology was developed to composite 

the maps into a complete LULC time-series (Figure 3-7).  

The user started with a mask that was equivalent to the watershed boundary and a LULC 

map that may or may not be complete. The mask clipped the LULC map for any area that the 
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mask covered. If the LULC clipped area covered the mask, then the clipped LULC map fed 

directly into the SWAT2009_LUC module. If the clipped area did not cover the entire watershed, 

then that portion which was missing sourced data from a map of the previous or next year, 

depending on whichever is available. The missing area was clipped from a different year's map 

and then composited into a complete map to be fed into SWAT2009_LUC. The process was 

repeated for all years until the last year for which LULC data were available. For years where 

large portions of the watershed were missing, a LULC update was not created for that year. For 

example, the 2003 CDL map covered only the area of the ICRB in Minnesota. 

The results could be quite disjointed such as the DNR maps with their Minnesota portion 

clipped from a CDL map. The process was not perfect, but given that HRUs were not spatially 

explicit and the need to account for crop rotation and periodicity, a spatially broken LULC map 

which accounts for some LULC change was perhaps better than assuming no change at all. The 

land use change scenarios in Chapter 7 exploited SWAT’s LULC update capability by either 

feeding new maps or manipulating the area fractions directly. With the final step for model 

development done, calibrating the model parameters to best fit the observations came next.  
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Table 3-1 Soil type distribution in the ICRB 
 

Series Name Area 
Coverage (%) 

Hydrologic 
Soil Group 

Layers  
Simulated 

Maximum 
Depth (mm) 

Bassett 0.46 B 3 1854 
Bixby 0.02 B 3 1524 
Blooming 0.52 B 4 1524 
Blue earth 0.31 B 3 1524 
Canisteo 0.97 B 4 1524 
Clarion 12.2 B 3 1524 
Clinton 2.48 B 3 2032 
Clyde 0.80 B 4 1524 
Coland 1.47 B 3 1524 
Colo 9.43 B 3 1524 
Dinsdale 11.5 B 3 1854 
Downs 5.77 B 4 1524 
Estherville 0.45 B 3 1524 
Fayette 0.02 B 3 1854 
Hayden 0.09 B 3 1524 
Kenyon 10.8 B 3 1930 
Kilkenny 0.46 B 3 1524 
Kossuth 1.03 B 3 1524 
Ladoga 1.35 B 3 1524 
Lester 3.25 B 3 1524 
Mahaska 0.97 B 3 1778 
Marna 0.52 C 3 1524 
Marshan 0.81 B 4 1524 
Maxcreek 0.47 B 4 1600 
Maxfield 0.11 B 3 1676 
Otley 3.76 B 3 1854 
Readlyn 1.23 B 3 1524 
Rockton 1.68 B 4 813 
Rossfield 0.03 B 3 1524 
Sargeant 0.43 D 4 1625 
Skyberg 0.29 C 4 1676 
Sparta 2.70 A 3 1524 
Spillville 6.44 B 2 1524 
Tama 14.9 B 3 1524 
Titus 0.42 B 3 1575 
Tripoli 1.12 B 3 1676 
Udolpho 0.54 B 5 1524 
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Table 3-2 ArcSWAT modification on STATSGO database 
 

Characteristic Name SWAT Variable 
from Chapter 2 Description 

NLAYER j1,j2, … , jn Number of layers 

HYDGRP not in Chapter 2 Hydrologic group for CN classification 

SOL_ZMX zj,max total soil column depth 

SOL_ALB not in Chapter 2 moist soil albedo for temperature calculations 

ANION_EXCL θe fraction of porosity from which anions are excluded 

USLE_K not in Chapter 2 soil erodibility factor for universal soil loss equation 

SOL_Z(j) zj depth of soil layer j 

SOL_CLAY(j) mc clay content in the j’th layer 

SOL_SILT(j) not in Chapter 2 silt content in the j’th layer 

SOL_SAND(j) not in Chapter 2 clay content in the j’th layer 

SOL_ROCK(j) not in Chapter 2 rock fragment in the j’th layer 

Texture (not used by SWAT) USDA soil texture descriptor 

SOL_BD(j) ρb soil bulk density in the j’th layer 

SOL_AWC(j) AWC plant-available water capacity 

SOL_K(j) Ksat,j saturated hydraulic conductivity in the j’th layer 

SOL_CBN(j) Corg organic carbon content in the j’th layer 

SOL_EC3(j) not in Chapter 2 electrical conductivity in the j’th layer 
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Table 3-3 SWAT land use and cover classes in the ICRB 
 

Code Area  (%) Name Plant  Equivalent 
for EPIC Crop Growth Model 

AGRL 0.19 Agricultural Land—Generic Grain Sorghum 
AGRR 2.40 Agricultural Land—Row Crops Corn 
ALFA 1.93 Alfalfa - 
BARR 0.05 Barren none 
CORN 42.94 Corn - 
FRSD 0.05 Deciduous Forest Oak 
FRSE 0.06 Evergreen Forest Pine 
FRST <0.01 Mixed Forest Oak 
LIMA 0.02 Lima Beans - 
OAK 4.40 Oak - 
OATS <0.01 Oats - 
PAST 5.04 Pasture Alamo Switchgrass 
PEAS 0.02 Peas - 
RNGB 0.25 Range-brush Little Bluestem 
RNGE 15.06 Range-grass Little Bluestem 
RYE <0.01 Rye - 
SGBT 0.00 Sugarbeet - 
SOYB 24.28 Soybeans - 
SWHT 0.00 Spring Wheat - 
UIDU 0.72 Industrial/Commercial Bermuda Grass 
URBN 1.06 General Urban/Residential Bermuda Grass 
URHD <0.01 High-Density Residential Bermuda grass 
URLD 0.02 Low-Density Residential Bermuda Grass 
URMD <0.01 Medium-Density Residential Bermuda Grass 
UTRN 0.51 Infrastructure/Transportation Bermuda Grass 
WATR 0.74 Open Water none 
WETF 0.12 Forested Wetland Oak 
WETN 0.13 Non-Forested Wetland Alamo Switchgrass 
WWHT <0.01 Winter Wheat - 
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Table 3-4 Iowa DNR land use classes and SWAT equivalent 
 
Iowa DNR LULC SWAT LULC Code SWAT LULC Name 

water WATR Open Water 
wetland WETN Non-Forested Wetland 
bottomland forest OAK Oak 
coniferous forest FRST Pine 
deciduous forest OAK Oak 
ungrazed grassland RNGE Range-grass 
grazed grassland PAST Pasture 
alfalfa  ALFA Alfalfa 
corn CORN Corn 
soybeans SOYB Soybeans 
other rowcrop AGRR Agricultural Land—Row Crops 
roads UTRN Infrastructure/Transportation 
commercial industrial UIDU Industrial/Commercial 
residential URBN General Urban/Residential 
barren BARR Barren 

 

 
Table 3-5 2001 NLCD Land use classes and SWAT equivalent 
 
NLCD LULC SWAT LULC Code SWAT LULC Name 

Open Water WATR Open Water 
Developed, Open Space URLD Low-Density Residential 
Developed, Low Intensity URLD Low-Density Residential 
Developed, Medium Intensity URMD Medium-Density Residential 
Developed, High Intensity URHD High-Density Residential 
Deciduous Forest OAK Oak 
Evergreen Forest PINE Pine 
Mixed Forest OAK Oak 
Shrub/Scrub RNGB Range-shrub 
Grassland/Herbaceous RNGE Range-grass 
Pasture/Hay PAST Pasture 
Cultivated Crops AGRR Agricultural Land—Row Crops 
Woody Wetlands WETF Forested Wetland 

Emergent Herbaceous Wetland WETN Non-Forested Wetland 
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Table 3-6 2012 USDA CDL land use classes and SWAT equivalent  
 
CDL LULC SWAT LULC Code SWAT LULC Name 

Open Water WATR Open Water 
Barren BARR Barren 
Deciduous Forest OAK Oak 
Evergreen Forest PINE Pine 
Mixed Forest OAK Oak 
Developed/Open Space URLD Low-Density Residential 
Developed/Low Intensity URLD Low-Density Residential 
Developed/Med Intensity URMD Medium-Density Residential 
Developed/High Intensity URHD High-Density Residentia 
Grassland Herbaceous RNGE Range-grass 
Shrubland RNGB Range-brush 
Herbaceous Wetlands WETN Non-Forested Wetlands 
Woody Wetlands WETF Forested Wetlands 
Corn CORN Corn 
Lima Beans LIMA Lima Beans 
Oats OAT Oats 
Peas PEAS Peas 
Soybeans SOYB Soybean 
Sugarbeet SGBT Sugabeet 
Sweet Corn CORN Corn 
Rye RYE Rye 
Spring Wheat SWHT Spring Wheat 
Winter Wheat WWHT Winter Wheat 
Alfalfa ALFA Alfalfa 
Pasture/Hay PAST Pasture 
Other Hay/Non Alfalfa PAST Pasture 
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Table 3-7 Reservoir parameters provided the U.S. Army Corps of Engineers 
 
SWAT Variable Value Units Description 

RES_EVOL 51929 104 m3 Volume of water needed to fill reservoir to emergency spillway 
RES_PVOL 3462 104 m3 Volume needed to fill reservoir to principal spillway 
STARG(1) 3462 104 m3  Target reservoir storage for January 
STARG(2) 3067 104 m3 Target reservoir storage for February 
STARG(3) 2374 104 m3 Target reservoir storage for March 
STARG(4) 1942 104 m3  Target reservoir storage for April 
STARG(5) 2482 104 m3  Target reservoir storage for May 
STARG(6) 3462 104 m3  Target reservoir storage for June 
STARG(7) 3462 104 m3  Target reservoir storage for July 
STARG(8) 3462 104 m3  Target reservoir storage for August 
STARG(9) 3889 104 m3  Target reservoir storage for September 
STARG(10) 4316 104 m3  Target reservoir storage for October 
STARG(11) 4316 104 m3  Target reservoir storage for November 
STARG(12) 3876 104 m3  Target reservoir storage for December 
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Figure 3-1 Slope class distribution for ICRB   
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Figure 3-2 STATSGO soil type distribution for ICRB  
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Figure 3-3 Land use or cover distribution for the ICRB in 1985 and at the start of the 

historical simulation period  
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Figure 3-4 Watershed delineation flowchart, summarized from the ArcHydro software  
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Figure 3-5 Results from watershed delineation 
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Figure 3-6 HRU definition flowchart using ArcSWAT software 
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Figure 3-7 Algorithm to generate land use rasters from multiple sources with temporal and 

spatial gaps 
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Figure 3-8 LULC rasters generated from USDA-CDL, NLCD, and Iowa DNR from 

algorithm described in Land Use Update 
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CHAPTER 4: MODEL CALIBRATION AND SENSITIVITY’  

Introduction 

SWAT was a highly parameterized model with many modules, often based on empirical 

relationships (Whittaker et al., 210). The databases included in ArcSWAT contained the 

accumulated research for the behavior of soil and plant types (Harmel et al., 2006); those 

parameters that were not empirical could be coarse in resolution (Cotter et al., 2003). Calibration 

was the procedure for tuning these parameters to values that yielded a simulation that best fit the 

observation datasets. Preceding calibration was parameter selection because the model displayed 

different sensitivities to different parameters, especially as one considered the study area’s 

characteristics. The ICRB was a large basin and collecting detailed data for these parameters was 

prohibitively expensive and any field data that were collected would be sparse and spatially 

unrepresentative. 

One path to account for the model’s complexity and the ICRB’s size and variation was a 

procedure automating calibration and sensitivity analysis simultaneously. The sensitivity analysis 

portion of the combined procedure initializes with an exhaustive list of relevant parameters 

pulled from the literature and the numerical ranges that these parameters would be expected to 

fall under for the study area. These parameters were drawn from Table 2-4, Table 2-5, Table 2-6, 

and Table 3-2 and described in previous chapters. The procedure evaluated the model sensitivity 

to a parameter after each “iteration” or a series of runs that sampled from the n-dimensional 

parameter “space” where parameter ranges lie with n being the number of parameters. The 

sensitivity analysis culled those parameters whose sampled values had small or negligible 

changes to the “objective” function between the observed and simulated values, a metric to 

evaluate the model’s performance. The combined procedure blurred the distinction between 

sensitivity analysis and calibration because each iteration incorporated both. 

The autocalibration algorithm employed was Sequential Uncertainty Fitting (SUFI) 

(Abbaspour et al., 2004) and executed with the SWAT Calibration and Uncertainty Procedures 
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software suite (SWAT-CUP) (Abbaspour et al., 2007a). The sensitivity analysis employed a 

generalized additive model (GAM), a non-parametric regression technique to detect non-linear 

relationships between explanatory variables (the parameters) and the objective function outputs 

from an iteration’s simulation. The combined autocalibration and sensitivity procedure first 

operated on a calibration or control period and then validates using those parameters that remain 

after a sensitivity analysis with a validation or test period. The validation step was a separate and 

parallel iteration initiated by the user after an arbitrary number of iterations covering the 

calibration period. The validation used the same parameter sample sets and the results of the 

validation iteration only informed whether the user should go back to a previous calibration 

iteration, thus having no direct influence on the final parameter values. For mean monthly stream 

discharge, the calibration period was 1978-2002 and the validation period 2003-2012. For mean 

daily nitrate loading and concentrations, the calibration period was 2009-2011 and the validation 

period 2012-2013. 

Methods 

Objective Functions 

Objective functions measure a model’s performance with respect to how well the model 

simulates the observations. The autocalibration steps ran multiple simulations for an iteration and 

calculated those simulations’ objective function outputs. The outputs then determined the 

parameter space of the next iteration. Thus the choice of objective function was a critical part in 

employing autocalibration methods as the path that the calibration took and the parameter values 

that they converged to were predicated on the objective function (Legate & McGabe, 1999). The 

same could be said for sensitivity analyses that use objective functions to evaluate parameter 

sensitivity. Performance of the model with respect to objective functions were collectively 

measured by goodness-of-fit (GOF) statistics. 
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The objective function was the minimization of errors between the model results and the 

observations, a metric used by the Nash-Sutcliffe Efficiency (NSE) goodness of fit statistic 

where Q is discharge or any other parameter: 

Equation 4-1 NSE = 1 −
∑ �𝑄𝑄𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑏𝑏𝑠𝑠𝑖𝑖 �

2𝑛𝑛
𝑖𝑖

∑ �𝑄𝑄�𝑜𝑜𝑏𝑏𝑠𝑠𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑏𝑏𝑠𝑠𝑖𝑖 �
2𝑛𝑛

𝑖𝑖

∈ (−∞, 1] 

The NSE measured the ratio of the mean-squared-error (MSE) between the observations and 

simulated outputs to the variance of the observations. The NSE was a robust measure of GOF in 

hydrologic modeling (McCuen et al., 2006). The “acceptable” GOF for SWAT simulations 

depended on the statistic, the simulation’s time-step, and the output of interesting. The SWAT 

literature (Moriasi et al., 2007) reported the acceptable values for stream discharge at NSE=0.60 

for the monthly time-step and NSE=0.50 for the daily time-step. For daily nitrate loading or 

concentrations, the acceptable value was NSE=0.50. 

 While NSE was the GOF statistic for the autocalibration and sensitivity analysis, other 

statistics are important for evaluating model performance. Another GOF statistic this dissertation 

used was the percent bias (PBIAS), which calculated the ratio of the summed absolute model 

errors to the sum of the observations: 

Equation 4-2 PBIAS =  100 ×
∑ �𝑄𝑄𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑏𝑏𝑠𝑠𝑖𝑖 �𝑛𝑛
𝑖𝑖

∑ 𝑄𝑄𝑜𝑜𝑏𝑏𝑠𝑠𝑖𝑖𝑛𝑛
𝑖𝑖

∈ (−∞, +∞) 

PBIAS was a general measure of the model’s performance, evaluating the absolute magnitude of 

the model errors relative to the observations, giving the user a sense of whether the model was 

under- or over-predicting the observations. A PBIAS approaching zero was a good indicator of 

model performance. 

Widespread in pure statistical models, the squared Pearson product-moment correlation 

coefficient or the coefficient of determination (R2) was also present for comparison: 
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Equation 4-3 R2 =

⎣
⎢
⎢
⎡ ∑ �𝑄𝑄𝑜𝑜𝑏𝑏𝑠𝑠𝑖𝑖 − 𝑄𝑄�𝑜𝑜𝑏𝑏𝑠𝑠��𝑄𝑄𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖 − 𝑄𝑄�𝑠𝑠𝑖𝑖𝑚𝑚�𝑛𝑛

𝑖𝑖

�∑ �𝑄𝑄𝑜𝑜𝑏𝑏𝑠𝑠𝑖𝑖 − 𝑄𝑄�𝑜𝑜𝑏𝑏𝑠𝑠�
2𝑛𝑛

𝑖𝑖 ∑ �𝑄𝑄𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖 − 𝑄𝑄�𝑠𝑠𝑖𝑖𝑚𝑚�
2𝑛𝑛

𝑖𝑖

 

⎦
⎥
⎥
⎤
2

∈ [0,1] 

R2 measured the linear correlation or statistical dependence between the observations and 

simulations. The acceptable R2 in the SWAT literature for stream discharge was 0.70 at the 

monthly time-step and 0.60 at the daily time-step. The acceptable nitrogen discharge R2 for the 

daily time-step was 0.60. While well-known and widely used, the pitfalls of using R2 as the GOF 

statistic for calibration were that the statistic measured the degree of linear dependence 

irrespective of the difference in magnitudes between the observations and simulations. Equation 

4-3 demonstrated this aspect: the simulated values Qsim appeared in both the denominator and 

numerator whereas NSE (Equation 4-1) had only the observed values Qobs in the denominator. 

Thus if the simulations and observations were consistently off by an order of magnitude, a good 

R2 statistic would still result but the NSE would report otherwise (Krause et al., 2005). 

Parameter Sampling 

For the k’th run or single simulation of an iteration, the model required a parameter set 

𝑃𝑃�⃗𝑘𝑘. The parameter set contained the changes or replacement to the parameters of interest, 

explicitly tied to one run of one iteration. All parameter sets for an iteration were determined 

before the iteration begins by sampling values from each parameter’s range, a user-defined 

interval. The collective ranges for all parameters were called the parameter space. The sampling 

method was the Latin hypercube that sampled from the parameter space equally probable values 

(McKay et al., 1979). For example in a two-parameter sample space where a square grid 

represented all parameter value combinations, a Latin square was one where the sample positions 

are such that there was only one sample location in each row and column. The “hypercube” 

generalized to higher order dimensions or when the number of parameters exceed three. 
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Because some parameters depended on HRU and subbasin characteristics, the change had 

two methods. One method was the “relative” change or: pnew = pinit×(1+r) where p was the 

parameter’s numerical value and r was a factor in the interval [-0.5, 0.5]. The other method was 

“replace” where the sampled value was in the same units as the parameter and applied over the 

subbasin or entire basin for global parameters. In general if a parameters’ values varied with 

HRU or subbasin, the relative method was used. If the parameter was constant for the entire 

basin regardless of location, then the replace method was used. The initial list of parameters was 

drawn from the Table 2-4, Table 2-5, Table 2-6, and Table 3-2. The initial iteration contained the 

parameters that were either user-defined or came from a database. 

Sensitivity Analysis 

The typical approach to model calibration required performing the sensitivity analysis 

first and then adjusting those sensitive parameters (White & Chaubey, 2005). In these cases a 

one-at-a-time (OAT) analysis was the most basic method where the model, given default 

parameter values, was allowed to vary one parameter while others are kept constant. The relative 

sensitivity was then calculated from available observational output data from the gage stations 

(Saltelli et al., 2000):  

Equation 4-4 𝑆𝑆𝑠𝑠 = �
𝑥𝑥0
𝑦𝑦0
� �
Δ𝑦𝑦
Δ𝑥𝑥
�  

Sr was the relative sensitivity, x0 the initial parameter value, y0 the initial objective function 

output for an observed variable, Δx an arbitrary change in the parameter value, and Δy the 

change in the objective function with respect to the parameter change. Being a local technique, 

relative sensitivity did not account for interactions between variables. 

 The Latin hypercube parameter sampling method yielded parameters sets that were 

equally probable and distributed in the parameter space. The runs from these sets produced 

outputs and a set of NSEs. To account for interactions between parameters, one can develop a 
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multivariate regression where the parameters were the explanatory variables and the objective 

function the response variable: NSE ~ 𝛽𝛽0 + ∑ 𝑃𝑃𝑖𝑖 ⋅ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖 . This multivariate regression assumed that 

the parameters have linear and additive effects with the βi coefficients acting as weights. For a 

complex model with many modules and nonlinear components, linearity may not be appropriate 

(Cukier et al., 1978). To account for non-linear parameter influences in the sensitivity, a 

generalized additive model (GAM) was used as the basis of the sensitivity analysis. 

 Generalized additive models were non-parametric forms of the generalized linear model 

(GLM), which expanded the ordinary least squares regression to response variables whose error 

or residual distributions were not normal (Hastie & Tibshirani, 1990). A parametric model had 

an explicit form; e.g. y ~ β0 + β1x + β2x2 + …. The coefficients were determined by minimizing 

the sum of squared errors between the model and observations. A non-parametric model relaxed 

this requirement and had the explanatory variables be an unknown smooth function. The smooth 

functions themselves may contain coefficients or parameters, but these coefficients had no 

explicit connections to the physical system being modeled. For example an ordinary regression 

of population against with time may yield a coefficient equal the growth rate per unit time. The 

coefficients of the smooth functions would have little have direct meaning and they could change 

in number or form as the input data changes.  

The GAM took the following form: 

Equation 4-5 𝑔𝑔(E[𝑦𝑦]) ~ 𝛽𝛽0 + �𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖

+ �𝑓𝑓𝑗𝑗(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)
𝑚𝑚

𝑗𝑗

 

The left hand side or the g(E[y]) represented the link function that provided the relationship 

between the explanatory variables and the mean of the objective function output. The link 

function allowed for the residuals following a non-normal distribution. The right hand side of the 

equation contained a constant value β0, the sum of the smooth functions fi(xi), and the optional 

sum of multivariate smooth functions—e.g. f(x1,x2) = x1x2.  

71 
 



www.manaraa.com

  

The construction of a GAM in this dissertation produced smooth functions using cubic 

splines as the basis. A penalized iteratively reweighted least squares (IRLS) method fitted the 

splines of all the smooth functions to the response variable simultaneously (Holland & Welsh, 

1977). IRLS was a type of optimization algorithm related to the Gauss-Newton algorithm that 

treats the coefficients of the splines as weights and iterates through different weights until 

converging to a best fit (Wood & Agustin, 2002). Each smooth function underwent IRLS and 

penalties were added to the regression splines as the number of knots in the splines increase; that 

is, too smooth of a function would have little predictive ability outside the input data (Ruppert & 

Carroll, 1999). Statistical significance or the p-values were calculated from the smooth functions 

through the Wald test by comparing a smooth function to its null form: i.e. fi(xi) = 0. The changes 

to the response variable between the null and smooth functions used the normal or, alternatively, 

the χ2 distribution to calculate the p-value (Wood, 2013). The Wald test was a parametric test 

evaluating the significance of the smooth function and had no role in developing the GAM. 

The GAM was the model used in the sensitivity and parameter space reduction phase in 

Figure 4-1. The response variable was the NSE for an iteration. Smooth functions of the 

parameter values for a single iteration were the explanatory variables. The link function was the 

identity function, implying normally distributed residuals. Multivariate smooth functions were 

not considered because the requirement for their inclusion would increase the number of runs in 

an iteration and total computation time. The GAM regressed NSE against the sum of single 

variable smooth functions of the parameters plus a constant: 

Equation 4-6 NSE ~ 𝛽𝛽0 + �𝑓𝑓𝑖𝑖(𝑃𝑃𝑖𝑖)
𝑛𝑛

𝑖𝑖

 

 From Figure 4-1 the end of an iteration’s set of runs started the sensitivity analysis loop 

where the GAM was developed and p-values for the smooth functions calculated. Any p-values 

for a parameter’s smooth functions that were above a significance level α=0.10 would be 

subjected to a trial simulation to check the GAM-mediated sensitivity and parameter reduction 
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test. One simulation was run with the best parameter set from an iteration, but that run excluded 

the parameter whose smooth function p-value was above α. If the NSE of this trial simulation 

differed by more than 10-3 or 0.1%, then the parameter was re-added to the parameter space for 

the next iteration. The loop repeated this step for every parameter that fails the initial GAM p-

value test. After each iteration the parameter space reduced until settling to the most sensitive 

parameters: 8 related to discharge and 14 related to nitrate. Table 4-3 and Table 4-4 listed these 

parameters. Discharge calibration was performed by gage station and with eight stations, the 

total number of discharge parameters was 64. Nitrate had 5 global parameters and two stations 

with 9 parameter each, totaling 23 parameters for nitrate. 

Sequential Uncertainty Fitting (SUFI) 

The suite of tools in SWAT-CUP offered multiple autocalibration techniques and the 

software was heavily utilized to streamline the autocalibration steps outside of sensitivity and 

parameter space reduction. The general autocalibration procedure was a variation of the 

Sequential Uncertainty Fitting (SUFI) algorithm having the following workflow: (1) define 

initial parameter ranges and space, (2) sample from space using Latin hypercube method, (3) run 

M simulations for an iteration, (4) perform a multivariate regression whose t-score and 

covariance matrix determine the boundaries of the next iteration’s parameter ranges. The number 

of simulations per iteration was chosen as being at least one hundred times the number of unique 

parameters being sampled. The initial number of unique parameters were 18 for discharge and 21 

for nitrate parameters. With eight discharge gage, two nitrate gages, and 5 global parameters, the 

total number of initial parameters were 181, giving 18,100 initial simulations. However, the first 

iteration started with the most upstream gage station and only calibrated discharge so the actual 

“first” iteration had 1800 simulations. The initial parameters can be found on Table 2-4, Table 

3-2 for discharge and Table 2-5, Table 2-6 for nitrate; only those parameters that were described 

as “database” or “user defined” were modified. 
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This variation on SUFI had the initial iteration containing a large number of parameters 

and required the most time. The statistical significance of the GAM test step winnowed the 

number of parameters that determine whether a particular parameter may continue on to the next 

iteration. If the parameter did not pass the GAM step, it was reset to its initial value for the 

remainder of the autocalibration procedure. Before the next iteration proceeds, the parameter 

ranges were reduced as a means to converge to the optimal parameter values or range. This step 

used a different and less computationally intensive methodology compared to GAM. 

SWAT-CUP performed a multiple linear regression of the NSE against the parameter 

values and calculated a sensitivity matrix J from an iteration’s NSEs and the parameters that 

produced them: 

Equation 4-7 𝐽𝐽𝑗𝑗,𝑖𝑖 =   
ΔNSE𝑗𝑗
Δ𝑃𝑃𝑖𝑖

  �
 ΔNSE𝑗𝑗 = 𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖
Δ𝑃𝑃𝑖𝑖 =  𝑃𝑃0 − 𝑃𝑃𝑖𝑖

 

Jj,i was the entry for the j’th row and the i'th column of the sensitivity matrix. ΔPi the change in 

the i'th parameter from its original P0; in the case of relative changes, the original would be P0 = 

0. ΔNSEj was the partial contribution to the NSE in the j’th run from the i'th parameter. The 

partial contribution was calculated from a regression output when all coefficients in the 

regression were zero except for the i’th parameter’s coefficient. The number of rows in the 

sensitivity matrix was equal to the number of runs in the iteration and the column length was 

equal to the number of parameters sampled.  

 The parameter covariance matrix was then the approximated using the inverse of an 

equivalent Hessian matrix (JTJ) and the variance of the NSE from the iteration (Press et al., 

1992).  

Equation 4-8 𝐂𝐂 =  �𝑒𝑒NSE2 (𝐉𝐉T𝐉𝐉)−𝟏𝟏 

The estimated standard deviation of the i’th parameter (sP,i) was the square root of the diagonal 

term from the covariance matrix C. From sp,i the 95% confidence interval of the parameter value 
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from the best simulation was calculated with b*
i being the parameter from the run with the best 

NSE: 

Equation 4-9 

Equation 4-10 

Equation 4-11 

𝑒𝑒𝑃𝑃𝑖𝑖 = �𝐶𝐶𝑖𝑖𝑖𝑖

𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑔𝑔𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑖𝑖∗ − 𝑡𝑡𝜈𝜈,0.025𝑒𝑒𝑃𝑃𝑖𝑖
𝑃𝑃𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑖𝑖∗ + 𝑡𝑡𝜈𝜈,0.025𝑒𝑒𝑃𝑃𝑖𝑖

 

bi,lower and bi,upper were the upper and lower 2.5 and 97.5 percent confidence intervals and tν,0.025 

was the standard, two-sided t-score at a significance level of 0.05. The new parameter range after 

an iteration was: 

Equation 4-12 

Equation 4-13 

𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑔𝑔 = 𝑃𝑃i,lower − max �
𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑔𝑔𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛

2
,
𝑃𝑃𝑗𝑗,𝑚𝑚𝑙𝑙𝑚𝑚 − 𝑃𝑃𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
�

𝑃𝑃𝑖𝑖,𝑚𝑚𝑙𝑙𝑚𝑚𝑛𝑛𝑠𝑠𝑔𝑔 = 𝑃𝑃i,upper + max �
𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑔𝑔𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛

2
,
𝑃𝑃𝑗𝑗,𝑚𝑚𝑙𝑙𝑚𝑚 − 𝑃𝑃𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
�
 

Pi,min and Pi,max were the current iteration’s minimum and maximum values. The parameter 

update’s regression included all parameters, including the ones that failed the sensitivity test. 

Only after the new ranges were calculated did the number of parameters updated. The combined 

SUFI and GAM loops repeat until two conditions were met: (1) a run produced an NSE that met 

the acceptable literature value (0.60 for monthly stream discharge) and (2) the ratio of the 

maximum and minimum parameter range values was sufficiently small (≤0.05). The ratio was 

met for every parameter and was not a mean of the parameter range ratios. These conditions 

ensured that autocalibration produced a good simulation and had a narrow parameter range 

(Abbaspour, 2005). 

For stream discharge the model parameters were calibrated sequentially starting with the 

most upstream gage station and its contributing subbasins. Every gage station underwent its own 

autocalibration loop where the only parameters modified were those related to the subbasins and 

HRUs that contribute to the gage station. For example in Figure 4-3, subbasin group G1 = {1, 2, 

3, 5, 7, 9}’s nearest downstream contributing gage station is Charles City (Figure 4-3). The 
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combined autocalibration and sensitivity modified G1’s parameter space while minimizing the 

differences (expressed as NSE) between the observed and simulated values at that gage station. 

After G1’s parameter space shrank with an acceptable NSE for the best simulation at Charles 

City, the next subbasin group G4 underwent autocalibration and sensitivity with the Cedar 

Rapids gage station. The autocalibration of G4 includes G1’s parameters, but G1’s parameters 

neither underwent the GAM sensitivity culling nor were they included in calculating the number 

of runs for an iteration in G4’s autocalibration. Nevertheless, G1 contributed to G4 and thus the 

simulation GOF for the Cedar Rapids gage station depends on G1’s parameters values. 

In a sequential calibration the user must be careful not to overly narrow the parameter 

ranges for an upstream subbasin group. The autocalibration for G1 could “overfit” to Charles 

City, skewing the parameter space for G4 to compensate. Overfitting occurred when the 

parameter range for an upstream basin was too narrow and simulated that gage station’s 

observation well, but impacted the performance of the next gage station. For example a wide 

initial parameter range for G1 going into G4’s autocalibration would avoid overfitting. Meaning, 

the second stop condition where parameter range was sufficiently small (≤0.05) was not required 

to stop the autocalibration and sensitivity loops for the upstream gage stations. This stop 

condition only applied at the terminal gage station. 

The goal is that by the most downstream or terminal gage station G8, all parameters have 

converged to a narrow range and reached satisfactory statistics. Figure 4-2 summarizes the 

contributing subbasins’ spatial distribution with color coding to indicate the sequence and 

contribution. The stream discharge calibration period covered 1978-2002 for monthly mean 

discharges and the validation period covered 2003-2012. Not all stations had complete coverage 

of the calibration period. 

For nitrogen load and concentration autocalibrations, the observations came from the 

Cedar Rapids and Wapello USGS gage stations. The stations employed high-frequency sensors 

that measure combined nitrate and nitrite concentrations every 15 minutes in units of mg·L-1. 

Nitrite concentrations in streams are small (Peterson et al., 2001) and thus nitrite is lumped in 
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with nitrate for autocalibration. The nitrate sensors did not operate for the winter months of 

December, January, and February. Because SWAT’s driving input was daily precipitation, the 

autocalibration used the mean daily nitrate concentrations as observations. The nitrate loads were 

simply the product of the mean daily stream discharge and nitrate concentrations. Because the 

record at the time of autocalibration spanned only 2009-2012, the daily concentrations and loads 

were used in the autocalibration to supply the procedure a sufficient amount of data. The two 

outputs also served different purposes: load was important when considering total nitrogen 

export from the basin and concentration was important for water quality standards.  

The nitrate calibration was not done sequentially like discharge because of the inclusion 

of basin-wide or global parameters. Still, some parameters were separated into subbasin groups 

as shown by the dashed-line boxes in Figure 4-3. G4,N subbasins contributing to Cedar Rapids 

gage station encompasses the stream discharge groups G1 and G4. G8,N subbasins encompasses 

the remaining groups. The calibration period for nitrate covered 2009-2011 and the validation 

period coverd 2012-2013. Some nitrate “observations” were originally missing or were gaps in 

the record. With the exception of the winter months, these gaps were filled using artificial neural 

networks described in Chapter 5. Because the gaps were few and had excellent fits to the actual 

observations (Table 5-3), the influence of synthetic data in the calibration and validation dataset 

on the autocalibration was negligible considering the gap treatment only used time and observed 

discharge as explanatory variables. 

For either stream discharge or nitrate, the user may run a validation iteration after an 

arbitrary number of SUFI and GAM iterations. This dissertation allowed the autocalibration to 

have three calibration iteration for every validation iteration. The validation run simply repeated 

SUFI and GAM with simulations using the parameter sets from the calibration period’s third 

iteration. The results from the validation run were not incorporated into the overall 

autocalibration scheme and served only as a manual evaluation on the autocalibration progress. If 

the third iteration’s parameter sets produced low NSEs for the validation, then the autocalibration 
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took a step backwards, re-sampling from a previous iteration’s parameter space and re-starting 

the autocalibration procedure from that point.  

The first iteration included both calibration and validation periods as baselines to 

compare NSEs in future validation runs. The validation was run independent of the 

autocalibration, provided it used the same parameter set as the calibration run. Once both 

calibration and validation loops yielded an iteration whose parameter ranges are small and the 

NSE meets the acceptable value, the combined autocalibration and sensitivity procedure stops. 

The midpoint in the range for each parameter in the final calibration period iteration was then the 

“final” calibration parameter values applied to scenario runs in Chapter 5 and Chapter 6. Table 

4-3 and Table 4-4 listed the final parameter values for the calibrated model for discharge and 

nitrate, respectively.  

Results and Discussion 

Sensitivity 

The stream discharge parameters that survived the GAM sensitivity culling were the 

HRU runoff curve number at (CN2 or CN from Table 2-4), depth to impervious layer 

(DEP_IMP, zimp), evaporation compensation coefficient (ESCO, esco). The groundwater 

parameters, which were also at the HRU scale, were the groundwater delay time (GW_DELAY, 

δgw) and the threshold water content in shallow aquifer before groundwater can flow (GWQMN, 

aqsh,t,gw). The soil parameters at the HRU scale were the soil layers’ available water capacity 

(SOL_AWC, AWCj) and soil layer thicknesses (SOL_Z, zj). The Manning’s roughness 

coefficient (CH_N2, n) in the main channel was the only parameter at subbasin scale. Each HRU 

had different CN2, SOL_AWC, and SOL_Z values and so their changes were relative. 

SOL_AWC and SOL_Z had values for each soil layer in each HRU and so their changes were 

applied to all layers; e.g. the thicknesses of all soil layers in all HRUs of the subbasins 
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contributing downstream to gage station at Wapello were decreased by 18.9%. These subbasins 

were in orange or group G8 in Figure 4-2 and Figure 4-3.  

The global nitrate parameters were the soil denitrification exponential rate coefficient 

(CDN, βden), the organic nitrogen mineralization rate constant (CMN, βmin), the nitrate 

percolation coefficient (βNO3), the nitrate concentration in the rain (RCN, NO3
-
,P), and the 

threshold value for the nutrient cycling factor for denitrification to occur (γw,t). On HRU scale the 

soil parameters were a fraction of porosity that excludes anions (ANION_EXCL, θe), the initial 

nitrogenous soil humus or organic matter (SOL_ORGN, Norg,s), and the amount of organic 

carbon in the soil layers (SOL_CBN, Corg,j). The half-life of nitrate in the shallow aquifer 

(HLIFE_NGW, λ½,NO3,sh) was the only groundwater parameter for nitrate autocalibration. The 

management parameters were the maximum annual amount of fertilizer applied in SWAT’s auto-

fertilization operation (AUTO_NYR), the fertilizer application efficiency, (AUTO_EFF) the 

fraction of fertilizer applied to the top 10mm of the soil (ARFT_SURFACE), the biological 

mixing efficiency in a soil column (BIOMIX), and the soluble nitrogen concentration in runoff 

from urban HRUs (SOLN_CON).  

Stream Discharge 

SWAT-CUP was utilized to optimize the most sensitive parameters based on NSE, a 

goodness-of-fit (GOF) measure between the model simulation results and observations at the 

same location and time.  During the validation period, parameter sets were fixed (not optimized 

further) and NSE computed once again.  Table 4-5 summarizes the calibration and validation 

GOF statistics for stream discharge at the eight USGS gage stations from the simulation whose 

parameter set yielded the highest NSE in the final iteration. The calibration period NSE ranged 

from a low of 0.60 at the Iowa City station on the Iowa River to a high of 0.75 at the terminal 

gage at Wapello (below where the Cedar and Iowa Rivers join). The validation NSE ranged from 

a low of 0.55 at Old Man’s Creek, a small tributary of the Iowa River, and high of 0.88 at the 

Cedar Rapids station on the Cedar River. The calibration R2 ranged from a low of 0.73 at Charles 
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City on the Cedar River and a high of 0.83 at Lone Tree on the Iowa River. The validation R2 

ranged from a low of 0.73 at two locations: South Fork Iowa River near Providence and Old 

Man’s Creek. The high validation R2 of 0.90 was also found at two locations: Lone Tree and 

Wapello. The calibration PBIAS had the greatest magnitude difference from zero at Old Man’s 

Creek, where the best (optimal) parameters generally under-predicted the discharge by -40.3%. 

The lowest magnitude calibration PBIAS was found at Cedar Rapids where the best parameters 

generally over-predicted the discharge by 1.8%. The validation PBIAS had the same location 

trend but different signs: Old Man’s Creek was -49.1% under prediction and Cedar Rapids was -

4.8% under prediction. 

Aside from Old Man’s Creek, Charles City, and New Providence, the validation statistics 

were better than the calibration. These three gage stations were also upstream or lower order 

gages and the first to be calibrated. At most gage stations the simulations improved for the 2003-

2012 validation period, with markedly higher values in the downstream gages at Cedar Rapids 

and Wapello. The curve number was one of the more sensitive parameters when calculating 

runoff; these two stations saw the highest modification of their curve numbers with an increase 

in 22.1 and 24.8 percent in Cedar Rapids and Wapello, respectively. Aside from the curve 

number influence, the parameters in Table 4-3 did not show an obvious pattern with respect to 

the gage’s location in the watershed. As for the broad improvement in GOF statistics, one 

explanation could be that the input data were more accurate in the validation period. Land use 

and land cover (LULC) updated more frequently after 2003 with a total of eight maps. The 

calibration period only had updates in 1990, 1992, 1995, and 2002; the 1985 map was the 

model’s base LULC map. The early years would not have accurate LULC data and therefore one 

could expect the early years to not have as accurate statistics. The difference between the 

periods’ statistics were unexpected, but fortunate that accuracy during the validation periods 

seemed to out-perform that of the calibration period.  

Figure 4-4 through Figure 4-11 show the results for the combined autocalibration and 

sensitivity procedure for the stream discharge as a time-series with the observations, the best 
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simulation with the highest NSE from the calibration period, and the 95% parameter uncertainty 

(95PPU) from the final iteration. The top time-series were for the calibration period and the 

bottom time-series were for the validation period. The 95PPU was calculated from an empirical 

cumulative distribution function (ECDF) for each time step. For example, say a gage location 

had N observations to compare to simulated values from M runs for the final iteration, yielding 

an N×M matrix. Each row in the matrix was sorted in ascending order and cumulatively added to 

produce an ECDF from which the 2.5th and 97.5th percentiles were interpolated from M values. 

The result was an N×2 matrix of simulated time series with N time-steps. Plotted along with the 

values from the best simulation, the ECDF gave a zone that approximates a confidence interval 

without assuming a probability distribution for the variable at each time-step. 

Charles City had data gaps between from 1996 and 2000 for stream discharge and the 

simulated values were not drawn. Old Man’s Creek and New Providence’s discharge records 

started in late 1984 and late 1995, respectively, so the calibration periods were shorter than the 

other stations. Qualitatively the simulation time series tended to under-predict the observations, 

especially at gages on lower order streams such as Charles City, New Providence, and Old 

Man’s Creek. This under-prediction trend decreased with higher order gages with the peaks 

flows being very close to the observed as was the case with the 1993 and 2008 floods at Cedar 

Rapids and Wapello stations. In general the validation performed better than the calibration with 

the trend most pronounced on higher order gages. This trend could be seen numerically in GOF 

statistics and graphically on the time series plots. 

Nitrate 

Table 4-6 and Table 4-7 summarize the GOF statistics for nitrate load and concentration, 

respectively, for the Cedar Rapids and Wapello gage stations from the simulation whose 

parameter sets yielded the highest NSE in the final iteration. Because the nitrate autocalibration 

was simultaneously performed, the NSE from Wapello determined the stopping point. The 

autocalibration was not successful in finding a simulation for nitrate concentration that met the 
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stopping condition (NSE ≥ 0.50). Instead, the concentration and loading NSEs for Wapello were 

averaged and that was used as the stopping point for both variables. 

The calibration period NSEs for nitrate loads were 0.25 and 0.62 at Cedar Rapids and 

Wapello, respectively. The R2 statistics were 0.52 and 0.71. The PBIAS generally under-

predicted at Cedar Rapids and Wapello, -42.4 and -26.4 percent, respectively. The validation 

period NSEs for nitrate loads were 0.52 and 0.70. The R2 statistics were 0.73 and 0.79. The 

validation PBIAS also under-predicted at -44.4 and -27.4 percent. Nitrate load was the product of 

concentration and discharge. The variance of discharge was much larger than that of nitrate: 

discharge can vary between 0 and 2500 m3·s-1 while the maximum nitrate concentration for 

either gage stations was 18.5 mg·L-1. Thus if the model simulates discharge well, then nitrate 

loads should follow accordingly. In this case a comparison between discharge and nitrate load 

statistics cannot be directly made as the discharge statistics were monthly averages over three 

decades while nitrate had only five year daily averages. A model’s ability to simulate nitrogen 

dynamics using estimated loads (Q x C) relied too much on the discharge (Q), and so looking at 

the independent nitrate concentrations was considered to be more appropriate. 

The calibration period NSEs for nitrate concentrations were -0.35 and 0.48 at Cedar 

Rapids and Wapello, respectively. The R2 statistics were 0.29 and 0.49. The PBIAS under-

predicted at -22.9 and -0.90 percent. The validation period NSEs for nitrate loads were 0.15 and 

0.37 at Cedar Rapids and Wapello, respectively. The R2 statistics were 0.16 and 0.42. The 

validation PBIAS over-predicted at 0.30 and 21.4 percent. The model performed rather poorly 

for nitrate concentrations given these GOF statistics. Neither station made the cut-off point of 

NSE=0.50, and Cedar Rapids reported a negative NSE for the calibration period, indicating that 

the model errors were larger than the observations’ variance.   

The sensitivity procedure also eliminated the in-stream nitrogen parameters as none were 

statistically significant in the GAM and neither did they induce change in the NSE. This behavior 

could be explained from the stream network having fewer computational parts than the HRUs. 

With each subbasin having only one reach from which many HRUs export their outputs, in-
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stream parameters drove the model’s in-stream nitrogen dynamics less. One of the most sensitive 

parameters was the nitrogen rainfall concentration (RCN) that originally veered into a “too high” 

4-5 ppm range, leading to a re-start of the autocalibration procedure. The impact of RCN can be 

explained by how the model applies rainfall: each subbasin located the nearest climate station 

and used the precipitation time-series from that station for all HRUs. Any increase in RCN 

would lead to a large input into the system. The model default was 1 ppm and the autocalibration 

settled to 1.34 ppm, a more acceptable number than 4 ppm, which would be representative of 

high-density automobile and industrial emissions. 

Figure 4-12 and Figure 4-13 show time-series for nitrate loads at Cedar Rapids and 

Wapello, respectively. Figure 4-14 and Figure 4-15 show time series for the concentrations. 

These plots had the same configuration as the stream discharge figures: observation, best 

simulation, and the ECDF-derived 95PPU. The nitrate concentration plots also show two 

horizontal lines: the dashed is the EPA’s drinking water standard or Maximum Contaminant 

Level (MCL) at 10 mg ·L-1 for nitrate, and the dotted line the instrument detection limit for 

nitrate concentration from the manufacturer report for a HACH Nitratax sensor (HACH, 2011) 

The USGS reported detection limits for nitrate concentration as 0.1-1.0 mg·L-1, depending on 

instrument (Pellerin et al., 2013). Given that <1.0 mg·L-1 were approved for public release by the 

USGS, the instrument deployed was likely to have the lower detection limits. Therefore, the 

calibration included concentrations below 1.0 mg·L-1 in the calculation of GOF statistics, despite 

not knowing the actual instrument being deployed at these sites. 

Simulated nitrate loads at Cedar Rapids consistently underestimated the observations. 

Results at Wapello were similar but to a lesser degree. The 95PPU for the nitrate loads were also 

wider, compared to the stream discharge plots where the 95PPU were so narrow as not be seen 

on the plot. Wapello results showed a wider 95PPU during periods of high nitrate loads. The 

wide 95PPU reflected difficulty in the autocalibration procedure with finding optimal 

parameters. Because loads were correlated with discharge, one could see that 2012 was a drought 

year with very low loads, at or near zero during late summer. The following year saw a spike in 
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nitrate loads higher than that of the calibration years. The mechanism could be that with low 

rainfall, nitrogen fertilizer remained in the soil and at the break of drought, the fertilizer flushed 

out all at once in addition to new N-applications for 2013. The model did seem to predict this 

behavior well, even if the spikes in loading were lower. Here one could say the model 

successfully simulated daily discharge and the persistence of soil nitrogen during the drought 

period. 

The concentration time-series told a similar story as the load plots, only with less 

accuracy and precision. The calibration years showed concentrations generally following the 

observations: dipping and rising as observations dipped and rose. The Cedar Rapids time-series 

had a more erratic pattern with 2011 calibration year showing the best fit. Wapello’s calibration 

performed better, but the 95PPU was wider, indicating less precision. Going into the validation 

period with the 2012 drought showed an important facet for the model’s behavior. At both Cedar 

Rapids and Wapello the simulated concentrations never went below 1 mg·L-1 as they did for the 

observations. The model did not seem to behave well at low flows, overestimating the observed 

concentrations and also could not simulate the spike in May, 2012 when the observation went 

above 10 mg·L-1. Going into 2013 the increase in daily concentrations due to 2012’s fertilizer 

could be seen in the observations rising above the EPA standard for multiple days in May and 

June. Cedar Rapids simulations followed the dips and rises, but do not accurately simulate the 

observations. Wapello performed better. In both cases the model was able to simulate high 

nitrate concentrations. Still, the wide 95PPU at both stations throw in some doubt whether the 

model can perform these simulations precisely. 

Conclusion 

 The combined autocalibration procedure using SUFI and sensitivity analysis using GAM 

regressions successfully simulated stream discharge and nitrate loads at the monthly and daily 

time-step, respectively. The most sensitive parameters were related to the apportionment of 

runoff between infiltration and retention as soil moisture. For monthly average stream discharge, 
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the NSE statistic for all stations met, and at downstream gages exceeded, the minimum of 

NSE=0.60 in both calibration and validation periods. The validation period showed improved 

statistics over the calibration; this behavior could be attributed to input data being more accurate 

for later years or possibly an artifact of the calibration period being much longer. The longer 

calibration period would encompass more inter-annual variability that SWAT may not be able to 

capture. The model also performed better as one approached the outlet or as the number of 

contributing subbasins increased, indicating a law of large numbers effect where the sum of 

smaller contributing areas that do not behave as well independently lead to a good summation 

statistic. Physically speaking, the smaller streams were flashier and these dynamics were not 

captured well by SWAT, but the integration into larger streams muted these dynamics. 

 Nitrate loads met the minimum acceptable NSE for the daily time-step (NSE=0.50) at the 

Wapello outlet, but not at the mid-basin gage station at Cedar Rapids. The parameters most 

sensitive in the autocalibration related to nitrogen dynamics and movement in the soil column or 

HRU, the management of fertilizer in agricultural land uses, and the sole atmospheric parameter 

of rainfall nitrogen concentration. Nitrate concentrations do not perform so well, and none of the 

stations in either period met the NSE=0.50 minimum. An explanation for this would be the 

model granularity not being equivalent at the in-stream scale and that SWAT does not simulate 

nitrogen very well during periods of low flow like 2012. The management operations which 

dictated the application of fertilizer in this model were simplistic because they were set to default 

settings. The default fertilization scheme was inorganic nitrogen applied, the same for all 

agricultural HRUs. While the SWAT documentation dictates that the inorganic nitrogen includes 

both nitrate and ammonia, the reality was that the fertilizer input was almost entirely nitrate upon 

inspection of the output files not used in the calibration. 

 The justification for using the default settings was the lack of spatial data detailing the 

types of fertilizer, when or how they were applied, and in what quantities. The autocalibration 

incorporated these parameters out of necessity, but due to the spatial scales of the calibration—

only eight management changes corresponding to eight subbasin groups and gages—SWAT 
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would be unable to capture the true spatial heterogeneity in management practices in the ICRB. 

One group of parameters not included in the calibration were the heat units that scheduled dates 

when crops were planted, fertilized, or harvested. These parameters would have an impact on 

crop yields and fresh organic nitrogen (plant matter) inputs into the soil. One unexpected 

behavior the simulation had was that the accumulated heat units sometimes did not reach the 

required amount to initiate harvest. Thus harvest only occurred at the very end of year in the 

dead of winter, a most unrealistic practice. The harvest operation also added to the dead plant 

material, which increased total nitrogen in the soil. Additionally, if the harvest operation did not 

occur during the year, the yields would be zero and the organic nitrogen inputs into the soil 

would likewise follow suit. Thus the under-prediction of nitrate and the undue influence of 

rainfall nitrogen could be from the inaccurate scheduling of management operations by heat 

units. Extending this phenomenon further, the heat units not making the required harvest point 

would indicate a problem with the climate input data. 

Nevertheless, the calibrated model generally followed the observations, if not at exactly 

the correct time points, and the calibration also produced peaks in concentrations similar to the 

observations. More interestingly, the calibrated SWAT model emulated the response of nitrate 

loads to rainfall-runoff patterns, where a drought year followed by a wet year faithfully produced 

spikes in concentration and loads for the next year. Due to the poor performance in simulating 

nitrate concentrations, an alternative method was devised. The GAM used in the sensitivity 

analysis was non-parametric and could flexibly simulate complex systems, if at the expense of 

the user’s understanding of the regression model’s components. Artificial neural networks 

(ANN) took the idea of non-parametric models to their limit, producing a black-box of weights 

and numbers that simulate complex systems. The next chapter details the use of ANNs to 

compensate for SWAT’s poor nitrate concentration simulations. 
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Table 4-1 Discharge-related parameters that survived the sensitivity and autocalibration 
procedure with the parameter name, units, initial range, and description 

 
SWAT 
Parameter Units Minimum Maximum Description 

CH_N2 unitless 0.01 0.3 Manning's roughness coefficient for the 
main channel 

CN2 unitless 35 98 Runoff curve number for an HRU; relative 
change has range of [-0.25,0.25] 

DEP_IMP mm 1000 6000 Depth to impervious layer 

ESCO unitless 0 1 Soil evaporation compensation coefficient 

GW_DELAY day 1 90 Groundwater delay time 

GWQMN mm 0 5000 Threshold water content in shallow aquifer 
before groundwater can flow 

SOL_Z mm 0 3500 Soil layer thickness; relative change has 
range of [-0.25,0.25] 

SOL_AWC mm H2O/ 
mm soil 0 1 Soil available water capacity; relative 

change has range of [-0.5,0.5] 
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Table 4-2 Nitrate-related parameters that survived the sensitivity and autocalibration 
procedure with the parameter name, units, initial range, and description 

 

Parameter Units Default Min. Max. Description 

ANION_EXCL unitless 0.5 0.5 0.99 Fraction of porosity that excludes 
anions 

ARFT_SURFACE unitless 0.2 0.2 1 Fraction of fertilizer applied to top 
10 mm of soil column 

AUTO_EFF unitless 1.3 1 2 Nitrogen fertilizer application 
efficiency 

AUTO_NYR kg N/ha 300 300 600 Maximum allowable annual nitrate 
fertilizer for corn 

BIOMIX unitless 0.2 0.2 0.9 Biological mixing efficiency 

CDN unitless 1.4 0 3 Soil denitrification rate coefficient 

CMN unitless 0.0003 0.0001 0.003 Rate factor for organic nitrogen 
mineralization 

HLIFE_NGW days 0 0 200 Half-life of nitrogen in groundwater 
from Equation 2-61 

NPERCO unitless 0.2 0.5 1 Nitrogen percolation coefficient 

RCN ppm 1 1 1.5 Concentration of nitrate in rainfall 

SDNCO unitless 1.1 0.5 1.1 Nutrient cycling factor   v for 
denitrification to occur 

SOL_CBN % soil varies -0.5 1 
Soil organic carbon content, varies 
on HRs; relative change has range 
of [-0.5,1] 

SOL_ORGN mg/kg 0 0 100 Initial organic nitrogen 
concentration in the soil 

SOLN_CON ppm 0 0 5 Soluble nitrogen concentration from 
urban runoff 
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Table 4-3 Final parameter values after autocalibration for stream discharge.  

 

Parameter CH_N2 CN2 DEP_IMP ESCO GW_DELAY GWQMN SOL_AWC SOL_Z 

Units unitless unitless mm unitless day mm mm H2O/ 
mm soil mm 

Change replace relative replace replace replace replace relative relative 

Charles City 0.117 0.008 1383 0.966 71.43 24.09 -0.134 -0.245 

New Providence 0.149 -0.182 1565 0.995 47.99 463.94 -0.294 0.079 

Marshalltown 0.187 -0.095 1491 0.993 86.18 187.35 -0.46 -0.245 

Cedar Rapids 0.192 0.221 3026 0.961 59.75 805.38 -0.174 0.000 

Iowa City 0.182 -0.134 4437 0.998 22.27 353.27 -0.437 -0.229 

Old Man’s Creek 0.149 0.010 2813 0.948 30.72 44.85 -0.236 0.054 

Lone Tree 0.148 0.194 2390 0.921 89.78 570.46 -0.45 0.123 

Wapello 0.163 0.248 4593 0.847 51.60 778.45 0.131 -0.189 
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Table 4-4 Final parameter values after autocalibration for nitrate loading and concentration.  

 

Parameter Units Change Whole Basin Cedar Rapids Wapello 

ANION_EXCL unitless replace - 0.900 0.861 

ARFT_SURFACE unitless replace - 0.236 0.531 

AUTO_EFF unitless replace - 1.770 1.706 

AUTO_NYR kg N/ha replace - 440 541 

BIOMIX unitless replace - 0.279 0.211 

CDN unitless replace 0.562 - - 

CMN unitless replace 0.000672 - - 

HLIFE_NGW days replace - 143 91 

NPERCO unitless replace 0.836 - - 

RCN ppm replace 1.344 - - 

SDNCO unitless replace 0.993 - - 

SOL_CBN % soil relative - 0.590 0.98 

SOL_ORGN mg/kg replace - 35.76 65.88 

SOLN_CON ppm replace - 2.59 0.94 
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Table 4-5 Goodness of fit statistics for monthly average stream discharge at eight USGS 
gage stations for the calibration and validation period 

 

  Calibration Validation 

 Station NSE R2 PBIAS NSE R2 PBIAS 

Charles City 0.62 0.73 -32.2 0.61 0.79 -35.5 

New Providence 0.64 0.76 -46.1 0.66 0.73 -32.2 

Marshalltown 0.71 0.82 -35.9 0.81 0.89 -32.2 

Cedar Rapids 0.66 0.67 1.8 0.88 0.89 -4.8 

Iowa City 0.60 0.76 -40.3 0.64 0.86 -45.5 

Old Man’s Creek 0.65 0.82 -51.0 0.55 0.73 -49.1 

Lone Tree 0.63 0.83 -41.0 0.67 0.90 -43.8 

Wapello 0.75 0.76 -11.7 0.86 0.90 -17.7 

 
Table 4-6 Goodness of fit statistics for daily nitrate loading at Cedar Rapids and Wapello 

gage stations 

 

  Calibration Validation 

Gage Station NSE R2 PBIAS NSE R2 PBIAS 

Cedar Rapids 0.25 0.52 -42.4 0.52 0.73 -44.4 

Wapello 0.62 0.71 -26.4 0.70 0.79 -27.4 

 
Table 4-7 Goodness of fit statistics for daily nitrate concentrations at Cedar Rapids and 

Wapello gage stations 
 

  Calibration Validation 

Gage Station NSE R2 PBIAS NSE R2 PBIAS 

Cedar Rapids -0.35 0.29 -22.9 0.15 0.16 0.30 

Wapello 0.48 0.49 -0.90 0.37 0.42 21.4 
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Figure 4-1 Combined autocalibration and sensitivity analysis workflow. The SUFI2 

autocalibration parts are described in Abbaspour et al. (2007a). 
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Figure 4-2 Order of sequential calibration spatially defined 
 

 
Figure 4-3 Order of sequential calibration diagramed by subbasin 
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Figure 4-4 Simulated and observed stream discharge at gage station USGS 05457700 Cedar 

River at Charles City, IA for (top) calibration period and (bottom) validation 
period 
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Figure 4-5 Simulated and observed stream discharge at gage station USGS 05451210 South 

Fork Iowa River NE of New Providence, IA for (top) calibration period and 
(bottom) validation period. 
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Figure 4-6 Simulated and observed stream discharge at gage station USGS 05451500 Iowa 

River at Marshalltown, IA for (top) calibration period and (bottom) validation 
period. 
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Figure 4-7 Simulated and observed stream discharge at gage station USGS 0546500 Cedar 

River at Cedar Rapids, IA for (top) calibration period and (bottom) validation 
period. 
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Figure 4-8 Simulated and observed stream discharge at gage station USGS 05454500 Iowa 

River at Iowa City, IA for (top) calibration period and (bottom) validation period. 
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Figure 4-9 Simulated and observed stream discharge at gage station USGS 05455100 Old 

Man’s Creek near Iowa City, IA for (top) calibration period and (bottom) 
validation period 
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Figure 4-10 Simulated and observed stream discharge at gage station USGS 05455700 Iowa 

River near Lone Tree, IA for (top) calibration period and (bottom) validation 
period 
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Figure 4-11 Simulated and observed stream discharge at gage station USGS 0546550 Iowa 

River at Wapello, IA for (top) calibration period and (bottom) validation period 
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Figure 4-12 Simulated and observed nitrate load (tonne/day) at gage station USGS 05464500 

Cedar River at Cedar Rapids, IA for (top) calibration period and (bottom) 
validation period 
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Figure 4-13 Simulated and observed nitrate load (tonne/day ) at gage station USGS 0546550 

Iowa River at Wapello, IA for (top) calibration period and (bottom) validation 
period 
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Figure 4-14 Simulated and observed nitrate concentrations (mg/L) at gage station USGS 

05464500 Cedar River at Cedar Rapids, IA for (top) calibration period and 
(bottom) validation period with US EPA drinking water standard (10 mg/L) and 
detection limit (1 mg/L) 
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Figure 4-15 Simulated and observed nitrate concentrations (mg/L) at gage station USGS 

0546550 Iowa River at Wapello, IA for (top) calibration period and (bottom) 
validation period with US EPA drinking water standard (10 mg/L) and detection 
limit (1 mg/L) 

 

G8,N 
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CHAPTER 5: ARTIFICIAL NEURAL NETWORKS FOR DATA 
GAP TREATMENT AND WATER QUALITY MODELING  

Introduction 

Underlying the shift to “big data” in contemporary scientific investigation was the 

increased capabilities for collection, storage, and analysis (Manyika et al., 2011). For 

environmental data the deployment of instruments that can rapidly sample and transmit 

measurements to a data center was responsible for the collection aspect (Corke et al., 2010) and 

the ever decreasing costs of data storage and computational power were responsible for the latter. 

Some mathematical algorithms and problem-solving methods developed decades ago and 

infeasible to implement at the time had now become commonplace (Wu et al., 2008). One of 

these methods was the artificial neural network (ANN); the ANN was based on a biological 

neural network composed of neurons that interact and feed each other data to arrive at solutions 

to complex problems (Hassoun, 1995). 

Artificial neurons formed the basic components for ANNs, but could have many different 

architectures (Hagan et al., 1996). Each neuron may exist alone and accept inputs from other 

neurons or input data directly or neurons grouped as layers whose cumulative outputs transferred 

between layers. Biological neurons transmitted information across axons via action potentials 

and neurotransmitters and the artificial neuron’s analogous components were digital data and a 

transfer function that transforms the data before passing them on to other neurons (Hecht-

Nielson, 1989). What kind of transfer function, the number of neurons, the number of layers, and 

the network links and directionality together defined the ANN’s architecture. The types of 

problem to be solved dictated the ANN architecture. Regardless of architecture all ANNs 

required “training,” a term equivalent to calibration where the ANN “learns” from the training 

dataset and validates on a “testing” dataset. 

ANNs have been applied to a variety of problems including pattern recognition, operating 

control systems, and regression analysis (Patterson, 1998). ANNs have also seen increasingly 
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common usage in hydrological studies (Hsu et al., 1995; Govindaraju & Rao, 2010), especially 

comparing the performance of common watershed models such as SWAT to their ANN 

counterparts. This chapter dealt with two applications of ANNs: filling in time series data gaps 

and modeling in-stream nitrate concentrations.  

Data Gap Treatment 

While the high frequency stations provided a large amount of data, gaps still existed in 

the record due to instrument malfunction or removal for maintenance. An estimation method was 

helpful in preparing a more complete record for calibration and validation as the reliability of 

GOF statistics benefit from larger and complete datasets (Yapo et al., 1996). For filling in data 

gaps statistical models were typically sufficient and straightforward to use without the need for 

physical modeling beyond time and the readily available covariates such as stream discharge 

(Cohn et al., 1989). The classic statistical model was parametric where the constituent is 

approximated by the product of coefficients and covariates or their transformations: 

Equation 5-1 �̂�𝐶𝑖𝑖~𝛽𝛽0 +  𝛽𝛽 ⋅ 𝑓𝑓(𝑄𝑄𝑖𝑖, 𝑡𝑡𝑖𝑖) 

𝛽𝛽 was a vector coefficient and f some function of the explanatory variables. The coefficients 

were determined through least squares method that minimizes the sum of squared errors between 

model and observations or other techniques such as maximum likelihood estimation. The 

drawbacks of parametric models came from their assumptions: the model errors followed a 

normal distribution, the response variable was the sum of linear covariates, and the equation was 

determined a priori. 

Non-parametric methods overcame some drawbacks of classical parametric model, but 

introduced their own (Cheng, 1976). A non-parametric model relaxed the assumptions of 

linearity and did require determining the probability distribution of the response variable, an 

often necessary step in parametric statistical modeling. A non-parametric method avoided the 

need to define the right hand side of the equation, dependent solely on the available data 
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themselves. The resulting non-parametric model may be opaque in the sense that there were 

many terms on the right side of the equation and the coefficients of those terms did reveal much 

information about how the response variables physically relate to the explanatory variables. As 

such non-parametric methods fell victim to “overfitting” where the model accurately predicts the 

observations but poorly generalizes to new data (Sarle, 1995). Of the non-parametric methods 

the ANN may be the most opaque. The lack of formula, terms, and coefficients explicitly tied to 

those terms place ANNs in the far extreme of non-parametric methods. 

While Chapter 3 already walked through the SWAT model calibration and validation, a 

pre-processing step occurred before the calibration where the data gaps in the daily nitrate loads 

and concentrations were filled. The raw observations for daily nitrate concentrations and loads 

covered only five years with many gaps. The largest and consistent gaps occurred during the 

winter months and those gaps were not filled because a calibration or training dataset cannot be 

compiled for those periods. Any model trained on the non-winter months would be woefully 

biased and unreliable. Instead, the gaps during the time periods where the instrument was 

employed were filled to complete the seasonal records. The first step was justifying the use of 

the ANN over parametric methods. The Load Estimator (LOADEST) software was developed by 

the USGS and commonly used for estimating loads (Runkel et al., 2004). While designed for 

loads, the software implicitly modeled concentrations as the explanatory variables usually 

contain stream discharge.  

The process of evaluating a method’s efficacy at filling data gaps was as followed. The 

existing daily data were partitioned into calibration and validation sets through random sampling 

with equal probabilities for any given day. The size of the calibration dataset changed with the 

percent data gaps. That is, at 10% data coverage, only 10% of the data were selected for model 

calibration and 90% were for model validation. The percent data gaps chosen were ϵ {10, 11… 

89, 90}. For each data gap percentage value, fifty sample sets and subsequent calibration runs 

prevented the sampling procedure from producing an unrepresentative sample of the 

hydrological and temporal conditions at the monitoring station.  
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The total number of simulations for an estimation method was 4050: 81 data coverage 

percentages and 50 sample sets each. The GOF statistic was the NSE, but its distribution and 

median were used for comparison. The interquartile range (IQR) can be calculated from the fifty 

NSE replicates to approximate the variability of an estimation model’s performance.  That is, 

given a random sample set, the IQR represents the variability of an estimation method’s 

performance in predicting the rest of the dataset. The median NSE gave a sense of the overall 

accuracy of the gap treatment method. The following values were used to judge the 

generalizability of either models: the best median validation NSE, the percent data gap in which 

the NSE is found, Kendall’s τ rank correlation coefficient for median validation NSE with 

percent data gaps, and the τ-test’s p-value for the probability that the calculated τ was 

significantly different from zero. Kendall’s τ was non-parametric and showed whether the 

median NSE was increasing or decreasing with data gaps without regard to the NSE’s probability 

distribution. 

The gage stations are the same as the SWAT calibration: Cedar Rapids and Wapello. The 

general relationship mapped by the ANN was: 

Equation 5-2 ln𝐶𝐶  ~ 𝑓𝑓(ln𝑄𝑄 , sin𝜋𝜋𝑡𝑡𝑑𝑑)  

C was the mean daily nitrate concentration, Q the mean daily stream discharge, and td the day of 

the year mapped from an interval of [0,366] to [0,1] to account for periodicity. As for actually 

filling in data gaps versus a comparison between filling methods, the ANN training data set was 

split into 70% of the observations and the validation 30%, randomly selected from the entire 

record. The Methods section of this chapter detailed the mechanics and procedure for both ANN 

and LOADEST regression. 

Water Quality Modeling 

With the “learning” of the data for the training period completed, the neural network can 

estimate the missing data. Another potential application of neural networks is coupling with a 
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physically-based model with known and meaningful parameters to aid in any deficiencies of the 

latter model. Chapter 4 showed that SWAT could effectively simulate stream discharge and 

nitrate loads, but nitrate concentrations were not simulated with the same degree of accuracy, 

especially at low concentrations. 

An experimental procedure coupled SWAT and ANN by using SWAT’s stream 

discharge as inputs into the ANN. First, 5000 ANNs were trained on the following inputs: the 

natural log of the observed discharge Qt at the current time step, the natural log of discharges 

lagged by three days Qt-1..3 , the day of the year td mapped to [0,1] for periodicity, and the daily 

mean temperature of the five nearest contributing basins to the gage station, θ1, …, θ5. The target 

was the natural log of the observed concentrations excluding those filled in by the data gap 

treatment: 

Equation 5-3 ln𝐶𝐶  ~ 𝑓𝑓(ln𝑄𝑄𝑡𝑡 , ln𝑄𝑄𝑡𝑡−1, ln𝑄𝑄𝑡𝑡−2, ln𝑄𝑄𝑡𝑡−3 , sin𝜋𝜋𝑡𝑡𝑑𝑑 ,𝜃𝜃1, … ,𝜃𝜃5) 

The lagged discharges accounted for prior rainfall-runoff events, the day of year accounted for 

the fertilizer application on agricultural lands, and temperature at the nearest subbasins in the 

gage’s group accounted for nearby nitrogen dynamics. The outputs of the multiple networks 

were also used to construct 95% uncertainty intervals (95PPU) via the 2.5 and 97.5 percentile of 

the 5000 network outputs of each simulated time step’s ECDF. This interval is equivalent to 

those found in the time series plots in Chapter 4. A calibrated SWAT model’s output daily 

discharge was used to replace the observed discharge to link the two models. 

Methods 

Artificial Neural Networks 

The multilayer feed-forward ANN was the architecture class used for both the data gap 

treatment and the ANN-SWAT coupling. As universal function approximators (Hornik et al., 

1989), these ANN architectures were the most suitable for regression type problems where the 

outputs were a function of the inputs. The ANN architecture employed three layers: an input 
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layer, a “hidden” layer, and output layer. The number of neurons in the input layer was equal to 

the number of input variables. The output layer was a single neuron as nitrate concentration was 

the sole variable of interest. The hidden layer contains ten neurons that act as nodes, collecting 

input data multiplied by weights with numerical interval of [0,1].  

Figure 5-1 shows a schematic of the ANN architecture with input xi and weights wi,j 

denoting the weight for i'th variable to the j’th node or neuron. The circles were neurons and the 

boxes were transfer functions. The neurons summed the products and weights from each input 

vector plus a bias term, equivalent to a constant in an ordinary regression analysis. Transfer 

functions transformed the neurons’ sums with a tan-sigmoid function that mapped the sum from 

an interval of (-∞,+∞) to (-1,1): 

Equation 5-4 𝑓𝑓𝑡𝑡𝐻𝐻(Σ) =
2

1 + 𝛿𝛿−2Σ
− 1 

Σ was the sum of the weights and inputs to the j’th neuron or ∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑗𝑗,𝑖𝑖
𝑛𝑛
𝑖𝑖  and ft

H was the transfer 

function for the hidden layer. A second set of weights wj,O were multiplied with the outputs of 

the hidden layer and were summed at the output node before undergoing the output transfer 

function, ft
O, which was simply the identity function: 

The flow of inputs through the hidden layer to the output neuron and finally an output 𝑦𝑦� 

was one iteration of the ANN training. The training initialized with a randomized weights that 

change with each iteration by comparing the ANN estimated 𝑦𝑦� and target output, y. ANN 

training was an optimization routine of finding the best weights with respect to an objective 

function. The objective function for the ANN in this dissertation was the mean squared error 

(MSE): 

Equation 5-5 𝑓𝑓𝑡𝑡𝑂𝑂 ��𝑤𝑤𝑗𝑗,𝑂𝑂𝑓𝑓𝑡𝑡,𝑗𝑗
𝐻𝐻(Σ)

10

j

� = �𝑤𝑤𝑗𝑗,𝑂𝑂𝑓𝑓𝑡𝑡,𝑗𝑗
𝐻𝐻(Σ)

10

j

= 𝑦𝑦� 
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Equation 5-6 MSE =
1
𝐼𝐼
�(𝑦𝑦 − 𝑦𝑦�)2
𝑛𝑛

𝑘𝑘=1

 

 The algorithm to optimize the weights was the Levenberg-Marquardt or damped least-

squares method common in non-linear least squares curve fitting (Hagan & Menhaj, 1994).  

As the inputs propagated through the network for the estimated outputs, the errors between the 

outputs and the targets propagated backwards to update the weights. The backwards propagation 

required a constant learning parameter η and transfer functions that are differentiable. The 

weight update algorithm can be summarized as: 

Equation 5-7 𝐰𝐰∗ = 𝐰𝐰− �𝐉𝐉T𝐉𝐉+ 𝜂𝜂𝐈𝐈�−1𝐉𝐉𝐉𝐉 � 𝐉𝐉 = �
Δ(y − y�)
Δ𝑤𝑤𝑖𝑖,𝑗𝑗

,
𝜕𝜕𝑓𝑓𝑡𝑡
𝜕𝜕𝑤𝑤𝑖𝑖,𝑗𝑗

∶ 𝑖𝑖 = 1 …𝑀𝑀, 𝑗𝑗 = 1 … 10�  

w was the vector of weights, J the Jacobian matrix, I the identity matrix, and e the vector of 

absolute error between the target and outputs. In simpler language the update to the weights was 

a function of the partial change in the error and the derivative of the transfer function for a layer. 

These partial changes or derivatives were the elements of the Jacobian matrix.  

Complete details of the Levenberg-Marquardt algorithm was beyond the scope of this 

dissertation and can be found in most texts describing numerical methods for neural networks 

(Yu & Wilamowski, 2011). The stopping point for the algorithm depended on the test dataset. 

The ANN used the inputs from the validation dataset to calculate outputs for the validation 

targets for each iteration. If the MSE for the validation increased consecutively for five 

iterations, the training stopped. Although the validation MSE was used as the stopping point, the 

errors from the validation outputs were not used to update the weights, ensuring that the weights 

and the ANN as a whole can generalize outside the training data. 

Load Estimator 

The USGS’s LOADEST software for estimating constituent loads offered several 

parametric models whose coefficients or parameters were determined using adjusted maximum 
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likelihood estimation (AMLE), which maximized the log-likelihood function of a parametric 

model given censored constituent data (Cohn et al., 1989). The likelihood function was equal to 

the probability of a response variable value given a set of parameters. AMLE iteratively sampled 

from the parameter space and calculated the log-likelihood until convergence to a parameter set 

with no change in the log-likelihood estimate. For comparison a least squares regression method 

minimizes the sum of squared errors between the observations and a parametric model’s 

predictions. LOADEST offers 11 preloaded formulas, but the user could also define a custom 

formula.  

Equation 5-8 included all terms used in the premade formulas: 

Equation 5-8 𝐿𝐿 = 𝑎𝑎0 + ∑ 𝑎𝑎𝑖𝑖 ln𝑄𝑄𝑖𝑖−12
𝑖𝑖=1 + ∑ 𝑎𝑎𝑖𝑖𝜃𝜃 ln𝑄𝑄𝑗𝑗−24

𝑗𝑗=3 + ∑ 𝑎𝑎𝑗𝑗𝑑𝑑𝑡𝑡
𝑗𝑗−35

𝑘𝑘=4 + 𝑎𝑎5 sin 2𝜋𝜋𝑑𝑑𝑡𝑡 + 𝑎𝑎6 cos 2𝜋𝜋𝑑𝑑𝑡𝑡   

Q was centered stream discharge, θ a seasonal term typically defined as certain months out of the 

year, and dt centered decimal time. Some explanatory variables such as flow and time may 

correlate with one another so centering pre-processed the data to eliminate this relationship 

(Cohn et al., 1992): 

Equation 5-9 𝑄𝑄� = 𝑄𝑄� +
∑ (𝑄𝑄 − 𝑄𝑄�)3𝑁𝑁
𝑘𝑘=1

2∑ (𝑄𝑄 − 𝑄𝑄�)2𝑁𝑁
𝑘𝑘=1

 

Q was stream discharge or any other variable, 𝑄𝑄� the mean, and 𝑄𝑄�  the centered form.  

To choose the best formula from the preloaded for each station, a preliminary formula 

selection was done using 50 sample sets per formula at 50% data gap for each station. The best 

median calibration NSE was the decision metric. Table 5-1 shows the formulas for the Cedar 

Rapids and Wapello station after this preliminary procedure and the NSE statistics attached to 

them. Cedar Rapids had a briefer formula that depended less on time periodicity while Wapello 

had heavy dependence on time periodicity with both periodic (sine and cosine) terms included. 
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Results and Discussion 

Data Gap Treatment 

Figure 5-3a-d show the median NSE and the interquartile range of the sample sets’ 

validation NSE for the LOADEST and ANN models as a function of percent data gap or missing 

data. The parametric models in LOADEST do not seem to change with the percent data gap with 

low Kendall’s τ rank correlation coefficients: 0.30 and 0.01 for Cedar Rapids and Wapello, 

respectively (Table 5-2). The p-value in Kendall’s τ for Wapello were not statistically significant 

at α=0.05. The Kendall’s τ coefficients for the ANNs were 0.74 and 0.70 for the two stations 

with the low p-value indicating highly significant correlations. The median validation NSE plot 

in Figure 5-3b for the ANNs shows that ANN were sensitive to amount of data available and 

asymptotically improve as data gaps decreased. With few data gaps the ANNs performed better 

than their parametric counterparts with the highest median NSE for the ANN occurring at data 

gaps ≤ 20%. The LOADEST models did not have the same trend with Wapello having its highest 

median NSE at 68% data missing and Cedar Rapids at 36%. 

As for model variability in terms of the IQR in Figure 5-3c-d, a slight quadratic 

relationship appeared to exist between data coverage and an estimation model’s variability. For 

both LOADEST and ANNs, the variability was greatest at low data coverage <30%, least around 

40-60%, and increased above 60%; however, the ANN curves in Figure 5-3d show this 

relationship less strongly than LOADEST. The relationship could indicate that at high data 

coverage the estimation models begin to “overfit” to the calibration dataset and perform poorly 

on new data. The variability in the low data coverage was more intuitive as a small sample size 

was more likely to be unrepresentative.  

Considered in the context of data collection, if the resources for a project only allowed 

for grab sampling with uncertain frequency, then a parametric model for estimation of data gaps 

may be more appropriate as it is less sensitive to number and length of data gaps for a given site. 

If the resources for sampling design allowed for high data coverage or high-frequency sampling, 

114 
 



www.manaraa.com

  

ANN or other non-parametric models may be more accurate, exceeding that of the parametric 

models at very high data coverage. For either estimation method a risk of overfitting occurred at 

low and high data coverages, especially if the samples did not cover the temporal range of 

interest. In the case of high frequency sensors which had fewer gaps and a larger amount of data, 

the non-parametric ANN was superior for filling in data gaps. The ANN with the maximum NSE 

at 30% from this comparison exercise was then used to fill in the data gaps for the observed 

nitrate concentration time series. The NSE and R2 all exceeded 0.90 for both stations. The time 

series plot in Figure 5-4 shows the training data set as gray circles, the ANN estimated outputs as 

red, and the missing data filled in by the ANN in blue. The estimates matched the training or 

observations well except for 2012, the drought year that also presented problems for the SWAT 

autocalibration. 

Water Quality Modeling 

ANNs demonstrated their worth in filling gaps in comparison to purely statistical models. 

For prediction the ANN required more input variables and had greater dependency on SWAT’s 

discharge outputs. The ANN-SWAT coupling and the SWAT nitrate calibrated outputs were 

compared to each other to evaluate whether resorting to ANN for nitrate prediction would be a 

better alternative than using SWAT’s nitrate dynamics. From Table 5-4 and for the best 

networks, the calibration period NSEs for nitrate concentrations were 0.49 and 0.64 at Cedar 

Rapids and Wapello, respectively. The R2 were 0.60 and 0.65. The PBIAS under-predicted at -

7.3 and -5.3 percent. The validation period NSEs for nitrate concentrations were 0.70 and 0.53 at 

Cedar Rapids and Wapello, respectively. The R2 statistics were 0.79 and 0.63. The validation 

PBIAS under-predicted at -17.4 and -18.0 percent.  

From a numerical GOF standpoint, the ANN coupled with SWAT’s stream discharge 

outputs performed far better than SWAT’s nitrate autocalibration. Cedar Rapids’ calibration 

period NSE for SWAT by itself was negative while the ANN coupling had an NSE just short of 

the acceptable limit at NSE=0.50. The validation NSEs for the two stations also met the 
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acceptable limit with Cedar Rapids’s NSE exceeding that of its calibration period. The PBIAS 

also looked moderate, but the PBIAS for Wapello’s calibration period and Cedar Rapids’s 

validation period are greater in magnitude than SWAT by itself, which yielded PBIAS of -0.90 

and 0.30 percent for Cedar Rapids and Wapello, respectively. 

The time series plots told a very different story. Figure 5-5 and Figure 5-6 show the 

coupled ANN-SWAT nitrate concentrations for the calibration period (2009-2011) on top and 

the validation period (2011-2012) on bottom with the black lines being the observations, blue 

being the best ANN with the highest NSE, and the gray being the 95PPU. Compared to the 

SWAT nitrate autocalibration in Figure 4-14 and Figure 4-15, the coupled ANN-SWAT plots 

had a more noisy appearance as both the simulations and the 95PPU had pronounced day to day 

fluctuations. Despite the noisy appearance the coupled ANN-SWAT did appear to approximate 

the nitrate concentrations well in the calibration period for both Cedar Rapids and Wapello. The 

calibration 95PPU also had a narrow range around the simulations. The noisy appearance was 

perhaps due to the large number of ANNs trained (5000). With so many networks the continuity 

between each time step became less smooth; that is, the networks which produced the 97.5 and 

2.5 percentile networks between two consecutive time-steps may behave very differently. 

The validation time-series suffered an issue opposite that of SWAT’s nitrate 

autocalibration. Whereas the autocalibration hardly allowed concentrations to dip below 1 mg·L-

1, the coupled ANN-SWAT validation period did not mimic the nitrate spikes found in 2013. The 

low concentrations were consistent with concurrent lab samples reported at similar USGS gage 

stations (Pellerin et al., 2014). Instead the ANN simulated the low concentrations well. Cedar 

Rapids in this case performed better than Wapello with some nitrate concentrations going above 

10 mg·L-1 and an overall pattern that resembled the observations. ANN-SWAT’s Wapello in 

2013 completely missed the May-June spike. The 95PPU for the validation was also wider and 

noisier, indicating greater uncertainty compared to the calibration. For example in October 2012 

for both stations, the 97.5 percentile greatly exceeded the observations, some points exceeding 

the observed maximum daily concentration for their respective stations. 
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Conclusion 

ANNs had great utility in improving high-frequency datasets, but the sensitivity of the 

ANN to initial weights and their optimization hindered their use when attempting to fill-in values 

or interpolate missing data during a time period when the ANN had no training. Parametric 

models such as LOADEST would be better with a sparser dataset, but to effectively use 

LOADEST one would need samples equally spaced in time to reduce the sensitivity of a 

parametric model’s coefficients to the calibration data. The ANN did not have the same 

variability with data gaps that are random or have no particular pattern; their only requirement 

was that the training data cover the entire time frame of interest.  

The coupling of ANN with SWAT yielded mixed results for nitrate concentrations. The 

ANN-SWAT coupling simulated low nitrate concentrations where SWAT alone could not. Yet 

the coupled model failed to simulate the spikes in nitrate after a drought year, a phenomenon that 

a physically-based model can. The coupled model also had a greater degree of noise in the 

outputs, even from a single network. The number of explanatory variables may account for this 

noise because the ANN was “blind” to what were the important variables. With a large number 

of networks trained, the results may vary wildly as seen in the time series plots. While the 

statistics for the coupled ANN-SWAT exceeded that of SWAT alone, the visual inspection 

proved valuable in pointing out the flaws of a model that depended too much on numerical 

values, ignoring the actual attributes of the physical environment or special circumstances of 

each year. 
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Table 5-1 LOADEST results from preliminary model selection and the NSE for calibration 
and validation 

 
Location Calibration 

NSE 
Validation 
NSE 

Model 

Cedar Rapids 0.74 0.73 𝛼𝛼0 + 𝛼𝛼1 ln𝑄𝑄 + 𝛼𝛼2 ln𝑄𝑄2 + 𝛼𝛼3𝑑𝑑𝑡𝑡 

Wapello 0.55 0.59 𝛼𝛼0 + 𝛼𝛼1 ln𝑄𝑄 + 𝛼𝛼2 ln𝑄𝑄2 + 𝛼𝛼3 sin 2𝜋𝜋𝑑𝑑𝑡𝑡 + 𝛼𝛼4 cos 2𝜋𝜋𝑑𝑑𝑡𝑡 + 𝛼𝛼5𝑑𝑑𝑡𝑡 
 
 

 
Table 5-2 Best median validation NSE for the model replicates and their associated 

coverage 
 
Model Station Validation NSE % Data Gap τ p-value 
LOADEST Cedar Rapids 0.76 36 0.30 <0.001 
LOADEST Wapello 0.60 68 0.01 0.890 
ANN Cedar Rapids 0.76 20 0.74 <0.001 
ANN Wapello 0.89 19 0.70 <0.001 

 
 

 
Table 5-3 Goodness of fit statistics for the best artificial neural network 

  exp(√ MSE) (mg∙L-1) R2 NSE PBIAS 

Cedar Rapids 1.43 0.97 0.97 -0.893 

Wapello 1.06 0.92 0.92 -1.19 
 
 

 
Table 5-4 Goodness of fit statistics for daily nitrate concentrations at Cedar Rapids and 

Wapello gage stations for the ANN-SWAT coupling 
 

  Calibration Validation 

Gage Station NSE R2 PBIAS NSE R2 PBIAS 

Cedar Rapids 0.49 0.60 -7.3 0.70 0.79 -17.4 

Wapello 0.64 0.65 -5.3 0.53 0.63 -18.0 
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Figure 5-1 Schematic of a simple neural network with inputs x, weights w, and hidden (ft

H) 
and output (ft

O) transfer functions 
 
 
 
 

 
Figure 5-2 Updating schematic for the (a) j’th weight to the output neuron and (b) the j’th 

weight to the i’th variable 
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Figure 5-3 Comparison of NSE between LOADEST and ANN with respect to data gaps in 

terms of the (a,b) median NSE and (c,d) NSE interquartile range   

(a) (b) 

(c) (d) 
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Figure 5-4 Time series of nitrate concentrations at Cedar Rapids and Wapello. In red are the 

estimated values for existing observations to judge network performance. In blue 
are the missing data that were in-filled by the neural network. 
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Figure 5-5 Coupled ANN-SWAT simulated daily nitrate concentration (mg/L) at gage station 

USGS 05464500 Cedar River at Cedar Rapids, IA for the (top) calibration period 
and (bottom) validation period with US EPA drinking water standard (10 mg/L), 
the detection limit (1 mg/L), and the 95PPU or uncertainty band from the 5000 
neural networks  
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Figure 5-6 Coupled ANN-SWAT simulated daily nitrate concentration (mg/L) at gage station 

USGS 0546550 Iowa River at Wapello, IA for the (top) calibration period and 
(bottom) validation period with US EPA drinking water standard (10 mg/L), the 
detection limit (1 mg/L), and the 95PPU or uncertainty band from the 5000 neural 
networks 
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CHAPTER 6: APPLYING PROJECTIONS FROM THE NORTH 
AMERICAN REGIONAL CLIMATE CHANGE ASSESSMENT 

PROGRAM (NARCCAP) 

Introduction 

Climate modeling had its beginnings in the 1950s meteorology literature and the 

prediction of atmospheric events by explicitly solving the equations related to the conservation 

energy, conservation of momentum, mass balance, and the behavior of gases: the first ever 

attempt at a “general circulation model” (Phillips, 1956; Manabe & Wetherald, 1975) or GCM. 

These equations were otherwise known as the first law of thermodynamics, Newton’s second law 

of motion, the continuity equation, and the ideal gas law. Yet a formal definition of climate 

emerged only two decades after the first GCM, defined by the Global Atmospheric Research 

Program (GARP) of the World Meteorological Organization (WMO) as a system composed of 

the atmosphere, hydrosphere, cryosphere, land surface, and biosphere (Perry, 1975). Climate 

models have since diversified and can be characterized in one of four forms in order of 

increasing complexity (Shine & Henderson-Sellers 1983): (1) energy balance (EBM), (2) one-

dimensional radiative-convective (RC), (3) two-dimensional zonally average dynamical models, 

often grouped with Earth system models with intermediate complexity (EMIC) and (4) three-

dimensional general or global circulation. 

While the history of climate models started from the most complex type in the GCMs, the 

difficulties in prediction, forecast, and computation prevented their wide adoption (Ferraro et al., 

2003; Edwards, 2001). These difficulties included the necessary temporal and spatial scale for 

predictive utility, the extreme sensitivity of system variables to initial conditions, and the 

realizations that other systems such as the hydrosphere must also be modeled simultaneously 

(Lorenz, 1963). Thus climate modeling took a few steps backwards to investigate the individual 

components, birthing the other approaches addressing the equations used by Phillips (1956). The 

EBM simulated surface temperatures and was based on the black-body radiation applied in one 

or two dimensions (i.e. latitude and the Earth’s surface) with parameters accounting for albedo 
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effects related to ice or cloud cover (Sellers, 1969). The RCs can be seen as a discrete unit of an 

EBM where the dimension is altitude, incorporating wavelength-dependent radiative heat 

transfer and vertical heat flux along the vertical column from a point on the Earth to any arbitrary 

distance into the atmosphere. The EMICs were a broad group of models whose structures may be 

empirical or mechanistic and their unifying features were that they were just short of a three-

dimensional, time-continuous general circulation model (Claussen et al., 2000).  

Description of Climate Models  

As high-performance computing became more common, the GCMs returned and largely 

replaced the aforementioned models. The simpler models and their structures retained their 

usefulness because a typical 3º (~300 km) resolution GCM still incurred substantial 

computational resources. Personal computers could easily run the simpler models as either 

educational tools or for sensitivity before devoting resources to a full GCM simulation 

(McGuffie & Henderson-Sellers, 2005). The GCM category had varying levels of complexity. 

The original formulation dealt with only the atmosphere, equivalent to a computational fluid 

dynamics simulation on large temporal and spatial scales. As climate change became a more 

significant issue, many GCMs evolved into fully coupled ocean-atmospheric circulation models 

(OAGCM) with some including the biosphere and its carbon cycling (Sellers et al., 1986), 

leading to an alternate meaning for the acronym to stand for “global climate model.”  For the 

sake of brevity, further mentions of GCM include AOCGCM as the NARCCAP required the 

ocean-atmospheric coupling. 

Despite the computing power and intense research into atmospheric, oceanic, and other 

climatic processes, the coarse spatial scales limited the utility and applications for entities 

operating within small geographic areas and mesoscale climates. This limitation prompted the 

need to downscale the GCM simulation outputs to a finer resolution, considering that, 

historically, the downscaling methods were empirical (Giorgi & Mearns, 1991). With resolutions 

in the range of 50-100 km, a regional climate model (RCM) nested within a GCM produced finer 
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details given their more realistic surface characteristics in topography or vegetation with most 

able to simulate additional processes such as soil hydrology (Giorgi, 1990). The general 

methodology for producing GCM-RCM simulations was to run the GCM and have their outputs 

(temperature, moisture flux, etc.) interpolated to the RCM scale as boundary conditions to drive 

the higher-resolution model (McGregor, 1996). NARCCAP members collaborated and produced 

an ensemble of GCM-RCM combination for North America, simulating the historical period 

from 1971-2000 to validate the models with existing data and then simulating a projected period 

from 2041-2070 using the IPCC A2 emission scenario (Mearns et al., 2007). The NARCCAP 

repository at the time of their retrieval in 2013 totaled eleven combinations. 

The GCMs were the Community Climate System Model (CCSM), the Third Generation 

Coupled Global climate model (CGCM3), Geophysical Fluid Dynamics Laboratory (GFDL), and 

the Hadley Centre Coupled Model version 3 (HadCM3). CCSM (Collins et al., 2006) had a 1.4˚φ 

× 1.4˚λ resolution and 26 uneven vertical layers measured in air pressure with the top layer at 

220 Pa; the ocean grid varied between 0.3˚ to 1˚, depending on location, with 40 vertical layers. 

CGCM3 (Flato, 2005) had a 1.9˚φ × 1.9˚λ surface resolution with 31 vertical layers with the top 

layer at 100 Pa; the ocean grid underlain the surface atmosphere lied and its resolution was 0.9˚φ 

× 1.4˚λ with 29 vertical layers. CGCM3 also adjusted the ocean-atmospheric coupling for heat 

and fresh water input from rain and land runoff.  GFDL (GFDL GAMDT, 2004) had a 2.0˚φ × 

2.5˚λ grid with 24 vertical layers with the top layer at 300 Pa; the ocean grid varied between 0.3˚ 

to 1˚. HadCM3 (Gordon et al., 2000) had a 2.0˚φ × 2.5˚λ grid with 24 vertical layers with the top 

layer at 500 Pa; the ocean grid’s resolution was 1.25˚φ × 1.25˚λ with 20 vertical layers. All 

GCMs except HadCM3 modeled sea ice via rheology or as viscous plastic; HadCM3 modeled 

sea ice as freely drifting with the ocean currents. All GCMs had land components featuring soil 

layers, vegetation/canopy, runoff routing. GFDL employed the “bucket” method for soil water 

wherein above critical threshold, water ponds (Manabe, 1969) while the other GCMs employed 

soil columns with differing layers and infiltration rates (Liang et al., 1994). Table A-2 in the 

Appendix summarizes the features of the GCMs. 
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The RCMs were  the Canadian Regional Climate Model (CRCM), the Experimental 

Climate Prediction Center (ECP2), the Hadley Regional Model 3 (HRM3), the National Center 

for Atmospheric Research’s mesoscale model  (MM5I),  the Regional Climate Model version 3 

(RCM3), and the Pacific Northwest National Laboratory Weather Research and Forecasting 

model (WRFG). The RCMs differed in resolution, hydrodynamic conditions, land surface and 

cover features, boundary layer determination methodology, atmospheric moisture and cloud 

formation, uniformity aerosol dynamics, length of time-step, and calculation of solar radiation 

spectra. Table A-3 in the Appendix summarizes their dimensional features. 

Methods 

Data Pre-Processing 

The NARCCAP outputs were the daily maximum temperatures, minimum temperatures, 

and rainfall totals for grid points spaced approximately 50km apart. The location of the grid 

points did not coincide with the climate stations that provided data for the SWAT calibration 

runs. Simple spatial interpolation between climate model outputs would not accurately reflect the 

rainfall or temperature observed at climate stations (Najafi & Moradkhani, 2013).  A bias-

correction method (Teutschbein & Seibert, 2012) was applied to the NARCCAP outputs to 

prepare the data for usage in SWAT by way of distribution mapping. The bias-corrected time-

series replaced the precipitation and temperature files SWAT used to simulate the historical data. 

The NARCCAP outputs had a control or “historical” period of 1971-1998 and a “projected” 

period of 2041-2068. The GCM-CRM historical time series served as a check on whether 

climate models and their SWAT implementations deviated from the calibrated model using 

actual historical data. 

The bias-correction first performed an inverse distance weighting spatial interpolation 

between the RCM grid points to generate a synthetic historical time series for temperature and 
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precipitation matching the time-frame of the observed historical data and the location of the 

gauge stations: 

Equation 6-1 𝑃𝑃∗ =
∑ 𝑃𝑃𝑖𝑖

𝑑𝑑𝑖𝑖
𝑛𝑛
𝑖𝑖=1

∑ 𝑑𝑑𝑖𝑖−1𝑛𝑛
𝑖𝑖=1

 

P* was the daily precipitation for a climate station, Pi the daily precipitation for a GCM-

RCM grid point, and di  the Euclidean distance between the station and the grid point. Dry days 

with zero precipitation were abundant in climate time series and a correction prior to distribution 

mapping matched the observed and synthetic data’s dry day counts. A threshold was defined for 

each synthetic time-series such that the number of days with rainfall below the threshold equals 

the number of observed days with zero precipitation. The dry day correction was a partial 

adaption from local intensity scaling (Schmidli et al., 2006). The procedure then adjusted 

synthetic time-series’ values by way of percentile cumulative distribution function (CDF) 

mapping. The empirical CDF were constructed for both synthetic and observed time-series. The 

CDF location of each synthetic datum had a matching location with the observed CDF. The ratio 

of the two CDF produced a set of correction factors that were then applied to the synthetic time-

series.  

Figure 6-1 shows graphically the distribution mapping procedure. The projected time 

series underwent a similar procedure with modifications: no local intensity scaling for dry days 

and the use of correction factors from the historical time-series bias-correction. To generate new 

correction factors for the projected time-series with the observed time-series would defeat the 

purpose of having projected climate data; however, the correction factors did assume that the 

differences between an interpolated climate model output and the observations were non-

stationary.  
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Data Post-Processing 

 Precipitation, stream discharge, evapotranspiration (ET), and nitrate loads were the 

variables that evaluate the climate change scenarios using the bias-correct GCM-RCM inputs. 

Aside from nitrate loads, the variables were analyzed by seasons: December-January-February 

(DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November 

(SON). Three graphical methods and one statistical method were used to analyze these outputs. 

A general measure was the mean annual percent change. Means for each year were calculated 

from outputs at the monthly time step: 

Equation 6-2 % 𝐶𝐶ℎ𝑎𝑎𝐼𝐼𝑔𝑔𝛿𝛿 =
∑ 𝑄𝑄�𝑠𝑠𝑖𝑖𝑚𝑚28
𝑖𝑖=1

∑ 𝑄𝑄�𝑠𝑠𝑠𝑠𝑠𝑠28
𝑖𝑖=1

 

Qsim was either the climate model-driven outputs (or inputs in the case of precipitation) 

for the historical and simulated period. Qref was a reference period that differed for the control 

and projected periods. For the control period, the reference values were the observations or 

outputs from the calibrated SWAT model if observations were not available such as the case 

with nitrate loads and evapotranspiration. For the projected period, the reference values were the 

historical NARCCAP-driven SWAT inputs/outputs. Because the probability distribution of these 

datasets, both observational and simulated, were unlikely to be normal, boxplots were alternative 

methods to look at the distribution of the outputs. 

Quantile-quantile (Q-Q) plots were also an alternative when comparing two paired 

datasets in which one was a modified form of the other. Q-Q plots ranked two datasets in order 

from least to greatest and then plotted the ranked values on axes of the same units. Q-Q plots can 

be misleading for skewed data. For example in a Q-Q plot of stream discharge, the axes would 

necessarily encompass the largest or extreme values, but the configuration of the axes would 

obscure the distribution of flows on the lower end. To account for skewedness, the data were 

transformed by a median-normalization or mapping scheme from a reference dataset: the 
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reference median is set to zero, values above the median are scaled in reference to the maximum, 

and values below are scaled in reference to the minimum: 

Equation 6-3 𝑥𝑥∗ =  

⎩
⎪
⎨

⎪
⎧

𝑦𝑦𝑚𝑚𝑙𝑙𝑚𝑚   − 𝑥𝑥
𝑦𝑦𝑚𝑚𝑙𝑙𝑚𝑚  − 𝑦𝑦𝑚𝑚𝑠𝑠𝑑𝑑

if 𝑥𝑥 > 𝑦𝑦𝑚𝑚𝑠𝑠𝑑𝑑

0 if 𝑥𝑥 = 𝑦𝑦𝑚𝑚𝑠𝑠𝑑𝑑
𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑥𝑥

𝑦𝑦𝑚𝑚𝑠𝑠𝑑𝑑 − 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛
if 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑠𝑠𝑑𝑑

 

x* was the transformed datum, ymin the reference minimum, ymax the reference maximum, and ymed 

the reference median. This transformation resulted in negative values for any original value 

smaller than the reference median and positive for values greater than the reference median. A 

single datum was the monthly mean (discharge, nitrate load) or cumulative sum (precipitation, 

ET).  

The utility of these transformed Q-Q plots was two-fold. First, the data were separated 

into lower and upper portions which themselves may have different distributions and responses 

to climate change. Second, when x* was above 1.0 or below -1.0, the dataset of interest can be 

said to “overshoot” or “undershoot” the reference. For example, if a transformed stream 

discharge datum for the projected period was above 1.0 with respect to the historical climate 

modeled period, then the projected period datum was above the maximum for the historical 

period. Like the mean percent annual change, the Q-Q reference values for the historical period 

were the observations and the historical outputs were the reference for the projected period. 

 Finally, the Mann-Whitney U-test was used as the quantitative method to check whether 

the climate change yielded statistically significant differences or if the modeled historical/control 

period was significantly different from the observations. The U-test was non-parametric and did 

not assume a probability distribution for the data. When the data were paired such as the time 

series comparison between historical/projected or historical/observation, the U-test checked the 

differences in the medians between the two datasets.  
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Results and Discussion 

Precipitation 

Table 6-1 shows the percent change between the historical and projected periods for 11 

GCM-RCM climate models described previously for mean monthly cumulative precipitation. 

The precipitation data were bias-corrected inputs and did not have an added layer of modeling 

from SWAT. The model ensemble for the historical period featured small changes from the 

historical observations with the greatest deviation in MM5Ihadcm3 in the SON months. A 

seasonal trend existed where the climate models tend to over-predict for SON and under-predict 

for DJF months. The projected period displayed a climate signal between the periods as the 

model ensemble typically showed annual changes in excess of 5 percent. The trend was less 

seasonal and more model-based: CRCMccsm, HRM3gfdl, HRM3hadcm3, MM5Iccsm, 

MM5Ihadcm3, and WRFGccsm showed at least one season where the precipitation decreased. 

The greatest decrease was in CRCMccsm during JJA with a 20 percent decrease and the greatest 

increase is seen in HRM3hadcm3 during SON with a 28.1 percent increase. Overall, the model 

ensemble indicated increasing precipitation. 

Table 6-2 shows the Mann-Whitney U-test p-values for historical/observation and 

historical/projected monthly cumulative precipitation. Shades of blue and orange indicate the 

magnitude of the p-values for medians greater or less than the reference data: the smaller the p-

value, the darker the shade. The historical columns showed no model or season having 

statistically significant differences from the observations. For the projected period with historical 

climate simulated values as reference, only two models in two seasons total showed a 

statistically significant difference at α=0.05; still, compared to the historical/observation 

columns, the p-values were lower. A seasonal trend did appear with MAM and SON having 

more models with lower p-values. 

Figure 6-4 shows bar-plots of the average annual percent change from the observations. 

The climate models seem to succeed in simulating the historical period with SON having the 
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greater bias with consistently positive changes. Figure 6-5 shows bar plots for changes to the 

projected period with the reference being the simulated historical periods. The model ensemble 

showed positive trend with precipitation increasing for nearly all months except for JJA where 6 

out of 11 models show a decrease in precipitation. CRCMcgcm3 and ECP2gfdl show a slight 

increase but quite small compared to the rest (1.2 and 0.5 percent, respectively). 

Figure 6-6 and Figure 6-7 are boxplots for the historical and projected periods, 

respectively. The solid, dashed, and dotted horizontal lines were the maximum, median, and 

minimum values from the observations, respectively. The model maximums for the historical 

period tended to over-predict the observations for all seasons except for DJF, but the medians 

line up except for the SON months where the model medians were slightly lower than the 

observations’ median. The projected periods’ maximum monthly cumulative precipitation were 

mostly above the observations and the medians tended to be greater, but have high variability 

between climate models, especially for the JJA where there was no ensemble agreement on 

where the median monthly precipitation laid. 

Figure 6-8 and  Figure 6-9 contain the modified Q-Q plots for the historical and projected 

periods, respectively. The grid of plots had seasons as columns and climate models for rows. For 

each plot a single vertical line at zero indicated the dataset of interest’s median and the two 

horizontal lines at the 1.0 and -1.0 marks indicated the “overshooting” or “undershooting” of the 

reference dataset. If the data points followed a diagonal line from (-1.0, -1.0) to (1.0, 1.0), the 

model had good agreement with the reference dataset at values above and below the reference 

median.  The ensemble model control period showed good agreement with the observations; 

overshooting occurred sporadically across the models and season, but SON and JJA saw the 

most overshoots. Values below the observations’ median agreed very well with few deviations. 

The projected periods’ Q-Q plots show more differences. Overshooting occurred more frequently 

and towards the upper values while the lower values appeared similar to the historical 

simulations. The maximum for the projected tended to be above the maximum for the historical 

simulations, a result shared by the boxplots. 
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Stream Discharge 

The plots for monthly mean stream discharge and evapotranspiration followed the same 

sequence and formatting as precipitation previously: two annual percent change bar plots, two 

box plots, and two Q-Q plots, with each pair evaluating the historical and projected periods. 

Table 6-3 showed the average annual percent change for GCM-RCM model-driven SWAT 

simulations for stream discharge for the historical period using the calibrated SWAT model’s 

discharge as reference and the projected period using historical NARCCAP-driven simulations 

as reference. While historical climate model precipitation showed small changes compared to the 

observed discharge, stream discharge has greater variability. The greatest deviations were in JJA 

with CRCMccsm discharges the highest at 30.8 percent greater than the observations. Figure 

6-10 shows bar plots for the historical period and while the deviations were greater than those 

seen in precipitation, they seemed to be randomly distributed between the models, indicating the 

changes were within the uncertainty SWAT adds to the outputs.  

Figure 6-12 shows boxplots with same configurations as the precipitation boxplots with 

the horizontal lines being the calibrated model’s maximum, median, and minimum discharge. 

The NARCCAP-driven model maximum discharges nearly all exceeded the observed maximums 

with the exception in JJA. The medians did not line up in a consistent manner through the 

seasons and models. SON and MAM’s medians were slightly below the observed medians for 

those months. JJA agreed more with the observations with the medians lining up with the 

observations and only three models reporting maximums above the observations. Figure 6-14 

contain the Q-Q plots with median-normalized discharges for the historical period with 

observations as reference. Discharges below the medians in all the models appear to agree with 

the calibrated model as they laid on the 1:1 line. Above the medians the models tend to deviate 

with values above the observations, especially for SON where the highest flows tend to be above 

the 1.0 horizontal line. Quantitatively from Table 6-2’s historical columns, the p-values indicated 
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that although the medians may be off, they were not statistically significant except for three 

models in the SON months. 

The projected period’s percent change showed a more apparent climate change signal 

when compared to the historical NARCCAP-driven simulations. From Table 6-3 and Figure 

6-11, all models reported a positive change for SON with CRCMccsm being the greatest at 83.3 

percent increase in mean annual change. MAM sees the same trend across the models except for 

MM5Ihadcm3, which reported a small negative change at 0.1 percent. DJF has three models not 

reporting a positive annual change. JJA had more mixed results with 5 out of 11 models showing 

negative change and the other models showing positive: CRCMccsm had the greatest decrease in 

JJA at 30.8 percent and WRFGccsm greatest increase in JJA at 27.5 percent. The mixed results 

and large variation in both directions did show a model ensemble agreement for JJA in stream 

discharge in the mean annual stream discharge. The boxplots in Figure 6-13 told a similar story 

for JJA as the medians for the different models were scattered above and below and observed 

historical medians. The JJA maximums, however, only had one model reporting projected 

maximums lower than the historical maximums. Indeed, the maximums and medians for the 

other seasons were above the historical observations, agreeing with the story given by the 

percent changes in Figure 6-11. 

Figure 6-15 contain the Q-Q plots for the projected period with simulated historical 

period as reference. Whereas the Q-Q plots in Figure 6-14 show historical NARCCAP-driven 

discharge values below the median agreeing with the observed low flows, the projected period 

had low flows consistently above the historical simulations. The only aberration from the trend 

was in JJA, which showed little change in the low discharges or decreased low discharge in the 

case of CRCMccsm. The discharges above the median for DJF, MAM, and SON consistently 

showed increases from the historical simulations with the highest discharges overshooting the 

1.0 line. The exception was JJA where some models showed increase and other showed little 

change. The JJA story in the Q-Q plots was consistent with the other plots. Quantitatively, the p-

values in Table 6-4 showed projected medians that were statistically significant above the 
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simulated historical medians. CRCMccsm showed the only difference with a median flow that 

was statistically significantly lower than the simulated median. DJF and SON had the most 

models showing statistically significant greater median discharges while the statistical 

significance was in the minority for MAM and JJA. 

Evapotranspiration 

Historical NARCCAP temperatures did not deviate from the observations as all but one 

model and season had percent differences less than one percent (Table 6-7, Figure 6-22). The 

boxplots in Figure 6-24 and the Q-Q plots in Figure 6-26 show a consistent comparison. For the 

projected period the mean annual (Figure 6-23) and median daily (Figure 6-25) temperatures 

increased for all seasons with DJF having the greatest relative increase. The lowest absolute 

mean temperature increase occurs in MAM in the ECP2gfdl model at 1.23°C and the greatest 

absolute increase occurs in JJA in the HRM3gfdl model at 5.11°C (Table 6-9). While daily mean 

temperatures increased overall, the Q-Q plots in Figure 6-27 do not show evidence of extremes at 

either end of the distribution. Increased temperatures were expected in the climate change inputs 

as the driving A2 emission scenario depicted greater or little slowdown in greenhouse gas 

emissions. 

Actual evapotranspiration (ET) can be considered a proxy for watershed response to 

temperature increases due to climate change. Observations for actual ET were not available and 

so the horizontal lines for the historical period were all calibrated SWAT model outputs. Table 

6-5 shows the mean annual percent change from the calibrated SWAT simulation. ET was more 

well-behaved than stream discharge in the historical NARCCAP-driven simulations as seen on 

Figure 6-16 where the deviations in mean annual percent change was less than 10 percent in all 

cases except for three models and seasons in DJF and SON. MAM and JJA showed the least 

deviations in ET from the calibration and DJF and SON showed the most. DJF’s models had ET 

randomly distributed above and below zero while SON had ET consistently lower than the 

calibration. A reason for this might be that ET was already low for DJF and SON and small 
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changes in temperature from the NARCCAP time-series induced large changes in a watershed 

model outputs. 

The historical period box plots in Figure 6-18 show a consistent story with the bar plot as 

the maximum monthly cumulative ET rarely exceeded the calibrated model’s ET. DJF and SON 

did have lower raw ET values; DJF had low enough ET that the historical NARCCAP-driven ET 

had maximums that exceed the calibrated maximum. The Q-Q plots in Figure 6-20 show that 

MAM and JJA had distributions that generally align with the calibrated model’s distribution; 

however, sub-median ET values for JJA seemed to undershoot the calibrated model’s ET values. 

Between the models the ET distributions for DJF and SON were all strikingly similar, showing 

that despite the large percent changes, the distributions did not differ greatly from the observed 

temperature-driven calibrated model’s ET. Quantitatively, the p-values from Table 6-6 show 

only four models having statistically significant different medians from the calibrations, one 

occurring in DJF and the other three occurring in SON. 

The projected percent change in Figure 6-17 shows the greatest differences occurring in 

DJF with a majority of models reporting changes in exceedance of 25 percent. MAM had 

increased ET while JJA and SON had decreased ET, but the magnitudes of these changes were 

not as great as DJF and were all below 25 percent in either direction. MAM and SON showed a 

consistent trend across all models with increased and decreased ET, respectively. JJA had 

slightly mixed results with two models showing increased ET and others decreased; however, the 

magnitudes of the increases were small and below 5 percent. The projected period’s boxplots in 

Figure 6-19 shows an uncertain climate change signal for DJF: the large percent changes were 

due to the already low ET. MAM and SON’s median ET agreed with the bar plots as the models 

for those seasons were consistently above and below the calibrated model’s, respectively. JJA 

showed a more mixed response with the median ET being scattered across the models, but the 

maximum projected cumulative ET for JJA months were all above the calibrated models.  

The Q-Q plots in Figure 6-21 show a bimodal response with respect to the values below 

and above the median for DJF and JJA. The sub-median ET values for DJF were above the 
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historical NARCCAP-driven simulations, but the above median values did not deviate too much 

from the 1:1 line. JJA’s trend was opposite from DJF: sub-median projected ETs agreed with the 

historical and the above median projected ETs were generally higher than the historical ET. SON 

Q-Q plots generally showed the projected ETs agreeing with the historical NARCCAP-driven 

ET with the maximum projected values sometimes smaller than the historical. MAM had a 

similar trend as SON between the models except the maximum ETs generally exceeded the 

historical. Quantitatively, the projected median ETs for DJF were statistically significantly 

greater than the historical across all models. Such a broad trend cannot be said for the other 

seasons as the majority of models did not have statistically significant p-values. 

Nitrate Load 

Like evapotranspiration observed nitrate load data were not available for the historical 

period and horizontal lines for the boxplots are from the calibrated model outputs. Due to the low 

performance of the nitrate autocalibration for SWAT, the analysis here was different from those 

of the previous variables. Loads were summarized on an annual basis and not seasonal and Q-Q 

plots were not done for nitrate loads. The historical (1971-1998) percent change in Figure 6-28 

shows a slight degree of model variability, but the majority did have relatively small changes 

(<15% in either direction). Nitrate loads for the historical period were not statistically significant 

from the calibrated models and the medians on the boxplots agreed. The maximum historical 

NARCCAP loads for the models tended to under-predict the calibration maximum. 

The percent change for the projected period (2041-268) also on Figure 6-28 with the 

historical NARCCAP-driven simulations as the reference showed an ensemble agreement for 

increased nitrate loads on the annual basis. CRCMccsm reported decreased mean annual loads, 

but the decrease was small at 2.4 percent. The medians in projected period box plots also seemed 

to be higher for a few models and the maximum nitrate loads are mixed in their position below or 

above the calibration’s maximums. The projected p-values have 6 out 11 models with 

statistically significant and greater medians than the historical NARCCAP medians. As 
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mentioned in previous chapters, nitrate loads correlate with discharge and these result should not 

come as a surprise.  

Conclusion 

This chapter presented an enormous amount of information about the watershed response 

to climate change. With 11 GCM-RCM models, seasonal differences, considerations for what 

was the reference period, and the need to use multiple methods for data analysis, one can only 

provide general statements about the results. The enumeration of each and every percent change, 

median, p-value, etc. would be better read from tables and figures. That said, the general trends 

were that of changes in extreme values and of seasonal differences in the climate change signal. 

Inter-model comparison in the results and discussion suggested CRCMccsm as the model that 

appeared to be the exception to many trends in the results, despite the geographical home of the 

model being nearest to the ICRB.  The discharge plots and tables showed a wetter climate except 

for JJA, which had enough inter-model variability to prevent a clear conclusion on the status of 

precipitation during the summer months. Statistically, the median monthly precipitation did not 

show many statistically significant differences between the historical and projected NARCCAP 

models (Table 6-1), but the overall trend as displayed by the figures showed that increases in the 

annual mean precipitation occurred in all months except JJA. The discharge results indicated a 

wetter 2041-2068 projected period for most months except JJA, which had mixed results similar 

to precipitation. The extreme discharges for the projected period also increased for the non-JJA 

months. 

The evapotranspiration results showed the results of a warmer climate with the winter 

months the most affected, but it should be remembered that ET is low in the winter months of 

DJF. The ET plots did show that the distribution of ET in MAM and JJA were much wider than 

that of the calibrated SWAT model, supporting that changes in the extreme values of ET were 

projected for the period 2041-2068. Annual nitrate loads increased in a similar manner as 

discharge and this may be mostly due to load being a function of discharge at the basin outlet.  In 
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general, nitrate loads are projected to increase in the period 2041-2068 relative to the reference.  

Such a condition could presumably cause greater export of nutrients to the Gulf of Mexico and 

Gulf Hypoxia. 

Nevertheless, climate change and prediction cannot be exact and will always have 

uncertainty even with infinite computational power and speed. Another uncertain dimension to 

the future alongside climate change is land use change. Land use change can be induced by 

climate change and vice versa. It can also be induced by the choices of humans.  Chapter 7 

covers the ICRB and SWAT’s sensitivity to land use distribution with a look at specific 

scenarios based on specific considerations. The final part of this dissertation was the application 

of both land use and climate change scenarios to explore their combined impacts.  
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Table 6-1 Precipitation mean annual percent change for historical and projected periods. 
Reference period for historical columns are observed values and reference for 
projected values are historical NARCCAP. 

 
 Model Historical (%) Projected (%) 
  DJF MAM JJA SON DJF MAM JJA SON 

CRCMccsm -0.9 -0.4 1.5 0.9 -0.6 12.3 -20.0 26.2 
CRCMcgcm3 0.2 0.3 -0.2 0.5 12.0 17.5 1.2 2.5 
ECP2gfdl -0.9 0.2 -1.0 0.2 19.0 1.0 0.5 14.6 
HRM3gfdl -0.4 0.6 1.1 0.3 21.0 8.6 -8.7 1.5 
HRM3hadcm3 -0.7 -1.5 0.9 1.8 6.4 9.1 -3.1 28.1 
MM5Iccsm -1.3 -0.2 -0.1 0.6 -2.5 8.4 -11.0 16.3 
MM5Ihadcm3 1.0 -0.8 0.1 2.0 -5.1 6.6 -4.6 -0.7 
RCM3cgcm3 -0.7 0.5 0.1 0.1 11.5 14.5 8.7 10.8 
RCM3gfdl -0.6 0.0 0.6 0.3 21.1 22.7 4.4 14.3 
WRFGccsm 1.5 0.6 1.1 1.5 10.8 20.2 -13.4 6.6 
WRFGcgcm3 -0.8 0.1 0.5 1.2 22.2 6.1 11.3 18.2 

 
 
 
Table 6-2 Mann-Whitney U-Test p-values. Blue highlights indicate medians statistically 

significantly greater than historical climate model. Reference period for historical 
columns are observed values and reference for projected values are historical 
NARCCAP. 

 
 Model Historical Projected 

  DJF MAM JJA SON DJF MAM JJA SON 

CRCMccsm 0.44 0.87 0.22 0.83 0.76 0.14 0.08 0.10 
CRCMcgcm3 0.82 0.92 0.87 0.98 0.59 0.18 0.60 0.92 
ECP2gfdl 0.69 0.80 0.74 0.58 0.21 0.91 0.83 0.07 
HRM3gfdl 0.79 0.83 0.95 0.81 0.08 0.50 0.12 0.40 
HRM3hadcm3 0.62 0.66 0.91 0.97 0.73 0.46 0.92 0.01 
MM5Iccsm 0.16 0.92 0.87 0.65 0.57 0.27 0.16 0.43 
MM5Ihadcm3 0.56 0.65 0.66 0.85 0.72 0.54 0.81 0.64 
RCM3cgcm3 0.78 0.60 0.76 0.83 0.58 0.14 0.66 0.51 
RCM3gfdl 1.00 0.98 0.91 0.80 0.25 0.06 0.52 0.11 
WRFGccsm 0.39 0.95 0.66 0.60 0.25 0.02 0.10 0.81 
WRFGcgcm3 0.67 1.00 0.82 0.83 0.17 0.52 0.24 0.19 
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Table 6-3 Stream discharge mean annual percent change for historical and projected 
periods. Reference period for historical columns are observed values and 
reference for projected values are SWAT simulations using the historical 
NARCCAP climate projections as input. 

 
Model  Historical (%)   Projected (%) 
  DJF MAM JJA SON DJF MAM JJA SON 

CRCMccsm -4.3 -9.8 30.8 -15.1 10.7 40.5 -35.7 83.3 
CRCMcgcm3 -3.0 -6.7 5.5 -19.5 47.8 19.0 25.1 25.9 
ECP2gfdl 6.3 -12.0 -13.0 10.8 30.3 13.9 15.0 28.8 
HRM3gfdl 0.1 7.6 -4.4 -7.5 29.7 13.8 -4.0 14.7 
HRM3hadcm3 -1.1 4.3 4.9 -1.2 46.3 26.1 -5.0 74.7 
MM5Iccsm -14.9 5.4 10.4 -6.3 -6.2 10.5 5.6 72.5 
MM5Ihadcm3 17.2 0.4 12.2 -15.8 -15.4 -0.1 -13.7 31.4 
RCM3cgcm3 16.2 -12.2 2.8 -0.9 24.1 26.1 40.9 39.3 
RCM3gfdl 11.5 -10.5 -5.4 -1.1 31.9 50.8 31.3 51.0 
WRFGccsm 10.8 3.8 27.5 -9.5 -10.4 40.2 -14.5 35.8 
WRFGcgcm3 10.4 0.5 8.7 -5.1 49.4 21.4 26.9 80.7 

 
 
 
Table 6-4 Stream discharge Mann-Whitney U-Test p-values. Shades of orange indicate 

medians statistically significantly less than historical climate model and shades of 
blue indicate greater. Reference period for historical columns are observed values 
and reference for projected values are SWAT simulations using the historical 
NARCCAP climate projections as input. 

 
 
 Model Historical       Projected       
  DJF MAM JJA SON DJF MAM JJA SON 

CRCMccsm 0.42 0.30 0.98 <0.01 0.37 <0.01 <0.01 <0.01 
CRCMcgcm3 0.98 0.34 0.89 0.15 0.02 0.27 0.64 0.98 
ECP2gfdl 0.65 0.07 0.65 1.00 0.08 0.56 0.44 0.01 
HRM3gfdl 0.74 0.52 0.62 0.13 <0.01 0.71 0.33 0.07 
HRM3hadcm3 0.67 0.94 0.72 0.36 <0.01 0.13 0.94 <0.01 
MM5Iccsm 0.08 0.88 0.67 0.26 0.72 0.21 0.75 <0.01 
MM5Ihadcm3 0.73 0.65 0.71 0.02 0.29 0.84 0.39 0.08 
RCM3cgcm3 0.30 0.16 0.80 0.46 0.14 0.08 0.01 0.15 
RCM3gfdl 0.34 0.30 0.95 0.61 0.02 <0.01 0.02 <0.01 
WRFGccsm 0.56 0.99 0.26 0.02 0.70 <0.01 0.17 0.02 
WRFGcgcm3 0.65 0.89 0.95 0.38 <0.01 0.02 0.02 <0.01 
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Table 6-5 Evapotranspiration mean annual percent change for historical and projected 
periods. Reference period for historical columns are observed values and 
reference for projected values are SWAT simulations using the historical 
NARCCAP climate projections as input. 

 
 
 Model Historical  (%) Projected (%) 
  DJF MAM JJA SON DJF MAM JJA SON 

CRCMccsm 2.7 4.8 -1.1 -8.5 25.7 13.6 -8.8 -5.4 
CRCMcgcm3 -2.6 5.1 2.2 -3.9 57.8 15.2 -3.2 -18.6 
ECP2gfdl 9.3 1.6 1.2 1.9 54.5 2.8 -1.6 -1.9 
HRM3gfdl -1.9 1.7 2.0 -2.5 62.1 19.1 -11.6 -6.6 
HRM3hadcm3 3.3 -0.7 0.2 -4.7 40.2 10.7 -3.2 -0.9 
MM5Iccsm -6.6 0.5 0.1 -2.5 25.1 4.6 -13.0 -7.0 
MM5Ihadcm3 -0.8 2.2 0.9 -11.1 51.9 10.0 -4.9 -6.2 
RCM3cgcm3 6.1 3.4 0.5 -4.0 48.5 11.5 -0.5 -11.1 
RCM3gfdl 13.2 4.7 0.7 0.6 40.8 6.9 1.6 -4.6 
WRFGccsm -5.1 0.2 -0.6 -10.1 40.9 9.8 -8.0 -1.4 
WRFGcgcm3 8.8 1.3 -0.8 -5.5 12.5 6.4 2.2 -3.2 

 
 

 
 
Table 6-6 Evapotranspiration Mann-Whitney U-Test p-values. Shades of orange indicate 

medians statistically significantly less than historical climate model and shades of 
blue indicate greater.  Reference period for historical columns are observed values 
and reference for projected values are SWAT simulations using the historical 
NARCCAP climate projections as input. 

 
 Model Historical       Projected       
  DJF MAM JJA SON DJF MAM JJA SON 

CRCMccsm 0.96 0.29 0.89 0.02 0.01 0.01 0.22 0.23 
CRCMcgcm3 0.54 0.36 0.32 0.35 <0.01 0.01 0.60 <0.01 
ECP2gfdl 0.02 0.77 0.84 0.56 <0.01 0.71 0.81 0.52 
HRM3gfdl 0.94 0.75 0.56 0.56 <0.01 <0.01 0.15 0.16 
HRM3hadcm3 0.86 0.84 0.82 0.26 <0.01 0.09 0.79 0.82 
MM5Iccsm 0.59 0.95 0.68 0.65 <0.01 0.44 <0.01 0.12 
MM5Ihadcm3 0.55 0.70 0.59 <0.01 <0.01 0.25 0.50 0.23 
RCM3cgcm3 0.27 0.60 0.95 0.27 <0.01 0.09 0.60 <0.01 
RCM3gfdl 0.21 0.40 0.79 0.80 <0.01 0.15 0.41 0.26 
WRFGccsm 0.93 0.88 0.99 0.02 <0.01 0.08 0.53 0.82 
WRFGcgcm3 0.95 0.78 0.86 0.17 0.23 0.23 0.26 0.55 
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Table 6-7 Mean annual percent change for mean daily temperature for historical and 
projected periods. Reference period for historical columns are observed values 
and reference for projected values are SWAT simulations using the historical 
NARCCAP climate projections as input. 

 
 
 Model Historical (%) Projected (%) 
  DJF MAM JJA SON DJF MAM JJA SON 

CRCMccsm -0.4 0.1 0.0 0.0 43.0 29.4 16.7 26.4 
CRCMcgcm3 -0.5 0.1 0.0 0.0 55.0 31.7 16.4 32.6 
ECP2gfdl -0.6 0.0 0.0 0.0 62.7 13.8 10.0 24.5 
HRM3gfdl -0.2 0.0 0.0 0.1 61.0 32.7 23.2 29.6 
HRM3hadcm3 -1.4 -0.4 -0.1 0.2 38.4 19.6 15.3 32.4 
MM5Iccsm -0.4 0.0 0.0 0.1 36.4 19.0 8.6 23.2 
MM5Ihadcm3 -0.4 -0.3 -0.2 0.2 62.6 20.4 12.4 37.0 
RCM3cgcm3 -0.5 0.1 0.0 0.1 51.2 25.8 14.3 31.0 
RCM3gfdl -0.4 0.0 0.0 0.1 50.8 14.5 14.6 21.7 
WRFGccsm -0.4 0.0 0.0 0.0 55.1 19.3 12.0 35.0 
WRFGcgcm3 -0.2 0.1 0.0 0.0 23.3 15.2 7.7 25.2 

 
 
 

 
Table 6-8 Mean daily temperature Mann-Whitney U-Test p-values. Shades of blue indicate 

medians statistically significantly greater than historical climate model. Reference 
period for historical columns are observed values and reference for projected 
values are SWAT simulations using the historical NARCCAP climate projections 
as input. 

 
 Model Historical       Projected       
  DJF MAM JJA SON DJF MAM JJA SON 

CRCMccsm 0.64 0.98 0.73 0.99 <0.01 <0.01 <0.01 <0.01 

CRCMcgcm3 0.56 1.00 0.81 0.99 <0.01 <0.01 <0.01 <0.01 

ECP2gfdl 0.68 0.94 0.99 0.93 <0.01 <0.01 <0.01 <0.01 

HRM3gfdl 0.78 0.97 0.72 0.93 <0.01 <0.01 <0.01 <0.01 

HRM3hadcm3 0.49 0.86 0.70 0.92 <0.01 <0.01 <0.01 <0.01 

MM5Iccsm 0.70 0.95 0.64 0.99 <0.01 <0.01 <0.01 <0.01 

MM5Ihadcm3 0.63 0.90 0.83 0.89 <0.01 <0.01 <0.01 <0.01 

RCM3cgcm3 0.60 1.00 0.77 0.96 <0.01 <0.01 <0.01 <0.01 

RCM3gfdl 0.50 0.99 0.55 0.92 <0.01 <0.01 <0.01 <0.01 

WRFGccsm 0.58 0.77 0.98 0.88 <0.01 <0.01 <0.01 <0.01 

WRFGcgcm3 0.63 0.96 0.74 0.92 <0.01 <0.01 <0.01 <0.01 
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Table 6-9 Absolute change (°C) in mean daily temperature by season between NARCCAP 
historical 1971-1998 and projected 2041-2068 period  

 
 Model DJF (°C) MAM (°C) JJA (°C) SON (°C) 
CRCMccsm 2.70 2.60 3.67 2.63 
CRCMcgcm3 3.47 2.81 3.62 3.26 
ECP2gfdl 3.95 1.23 2.21 2.44 
HRM3gfdl 3.82 2.91 5.11 2.96 
HRM3hadcm3 2.43 1.73 3.37 3.24 
MM5Iccsm 2.29 1.69 1.89 2.32 
MM5Ihadcm3 3.93 1.81 2.74 3.70 
RCM3cgcm3 3.22 2.30 3.15 3.08 
RCM3gfdl 3.19 1.29 3.22 2.17 
WRFGccsm 3.45 1.71 2.65 3.50 
WRFGcgcm3 1.46 1.35 1.70 2.51 

 
 
 
 
Table 6-10 Nitrate load mean annual percent change and Mann-Whitney U-test p-values for 

historical and projected periods. Blue highlights indicate medians statistically 
significantly greater than historical climate model and shades of blue indicate 
greater. 

 
 
Model Percent Change    p-value   
  Historical Projected Historical Projected 

CRCMccsm 15.8 -2.7 0.27 0.26 
CRCMcgcm3 -0.8 20.4 0.52 0.38 
ECP2gfdl -15.8 23.7 0.29 <0.01 
HRM3gfdl -7.7 2.7 0.42 0.38 
HRM3hadcm3 2.4 12.8 0.49 <0.01 
MM5Iccsm -2.8 16.5 0.43 <0.01 
MM5Ihadcm3 -4.3 3.1 0.14 0.20 
RCM3cgcm3 -0.5 30.6 0.79 <0.01 
RCM3gfdl -6.9 48.9 0.46 <0.01 
WRFGccsm 10.5 11.9 0.51 0.13 
WRFGcgcm3 -0.5 27.7 0.54 <0.01 
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Figure 6-1 Bias-correction of precipitation by distribution mapping adapted from 

Teustchbein & Seibert (2012, Figure 6) 
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Figure 6-2 A model based on ocean and atmosphere interactions (NOAA, 2012) 
 
 
 

 
Figure 6-3 Downscaling of GCM to RCM (Gebetsroither et al., 2013)  

146 
 



www.manaraa.com

  

 
 
Figure 6-4 Mean annual percent change of monthly cumulative precipitation of 1971-1998 

NARCCAP historical period for 11 GCM-RCM model combinations and 4 
seasons. The reference period is the 1971-1998 precipitation input data from the 
actual historical record. 
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Figure 6-5 Mean annual percent change of monthly cumulative precipitation of 2041-2068 

NARCCAP projected period for 11 GCM-RCM model combinations and 4 
seasons. The reference period is the 1971-1998 NARCCAP precipitation. 
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Figure 6-6 Boxplot of cumulative monthly precipitations over the 1971-1998 NARCCAP 

historical period for 11 GCM-RCM model combinations and 4 seasons. The 
reference period for the horizontal lines is the 1971-1998 precipitation input data 
from the actual historical record 
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Figure 6-7 Boxplot of cumulative monthly precipitations over the 2041-2068 NARCCAP 

historical period for 11 GCM-RCM model combinations and 4 seasons. The 
reference period for the horizontal lines is the 1971-1998 precipitation input data 
from the actual historical record. 
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Figure 6-8 Quantile-quantile plots of median normalized monthly precipitation by season for 
the historical 1971-1998 simulation period with historical observations as 
reference. Horizontal lines at -1 and 1 indicate the min and max observations. 
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 Figure 6-9 Quantile-quantile plots of median normalized monthly precipitation by season for 
the projected 2041-2068 simulation period with 1971-1998 model values as 
reference. Horizontal lines at -1 and 1 indicate the min and max reference values. 
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Figure 6-10 Mean annual percent change of monthly stream discharge of 1971-1998 

NARCCAP historical period for 11 GCM-RCM model combinations and 4 
seasons. The reference discharge is from the 1971-1998 simulation from the 
calibrated SWAT model.  
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Figure 6-11 Mean annual percent change of stream discharge at the basin outlet over the 

projected 2041-2068 NARCCAP simulation period for eleven GCM-RCM model 
combinations. The reference discharge is from the 1971-1998 NARCCAP-driven 
simulations for each model.  
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Figure 6-12 Boxplot of monthly stream discharge over the 1971-1998 NARCCAP historical 

period for 11 GCM-RCM model combinations and 4 seasons. The reference 
discharge for the horizontal lines is from the 1971-1998 simulation from the 
calibrated SWAT model. 
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Figure 6-13 Boxplot of monthly stream discharge over the 2041-2068 NARCCAP projected 

period for 11 GCM-RCM model combinations and 4 seasons. The reference 
discharge for the horizontal lines is from the 1971-1998 simulation from the 
calibrated SWAT model. 
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Figure 6-14 Quantile-quantile plots of median normalized monthly stream discharge by season 
for the historical 1971-1998 simulation period with calibrated model as reference. 
Horizontal lines at -1 and 1 indicate the min and max calibration values. 

157 
 



www.manaraa.com

  

Figure 6-15 Quantile-quantile plots of median normalized monthly stream discharge by season 
for the projected 2041-2068 simulation period with historical NARCCAP as 
reference. Horizontal lines indicate the min and max historical model values. 
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Figure 6-16 Mean annual percent change of cumulative evapotranspiration (ET) of 1971-1998 

NARCCAP historical period for 11 GCM-RCM model combinations and 4 
seasons. The reference ET is from the 1971-1998 simulation from the calibrated 
SWAT model.  
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Figure 6-17 Mean annual percent change of cumulative evapotranspiration (ET) of 2041-2068 

NARCCAP period for 11 GCM-RCM model combinations and 4 seasons. The 
reference ET is from the 1971-1998 simulation from the historical NARCCAP 
driven SWAT outputs.  
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Figure 6-18 Boxplot of cumulative monthly evapotranspiration (ET) over the 1971-1998 

NARCCAP historical period for 11 GCM-RCM model combinations and 4 
seasons. The reference (ET) for the horizontal lines is from the 1971-1998 
simulation from the calibrated SWAT model.  
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Figure 6-19 Boxplot of cumulative monthly evapotranspiration (ET) over the 2041-2068 

NARCCAP projected period for 11 GCM-RCM model combinations and 4 
seasons. The reference (ET) for the horizontal lines is from the 1971-1998 
simulation from the calibrated SWAT model. 
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Figure 6-20  Quantile-quantile plots of median normalized evapotranspiration by season for 
historical 1971-1998 simulation period with calibrated model as reference. 
Horizontal lines at -1 and 1 indicate the min and max calibration values. 
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Figure 6-21 Quantile-quantile plots of median normalized evapotranspiration by season for the 
projected 2041-2068 simulation period with historical NARCCAP as reference. 
Horizontal lines indicate the min and max historical model values. 
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Figure 6-22 Mean annual percent change of mean daily temperature of 1971-1998 NARCCAP 

historical period for 11 GCM-RCM model combinations and 4 seasons. The 
reference ET is from the 1971-1998 simulation from the calibrated SWAT model. 
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Figure 6-23 Mean annual percent change of mean daily temperature of 2041-2068 NARCCAP 

projected period for 11 GCM-RCM model combinations and 4 seasons. The 
reference period is the 1971-1998 NARCCAP precipitation. 
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Figure 6-24 Boxplot of mean daily temperatures over the 1971-1998 NARCCAP historical 

period for 11 GCM-RCM model combinations and 4 seasons. The reference 
period for the horizontal lines is the 1971-1998 precipitation input data from the 
actual historical record 
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Figure 6-25 Boxplot of mean daily temperatures over the 2041-2068 NARCCAP historical 

period for 11 GCM-RCM model combinations and 4 seasons. The reference 
period for the horizontal lines is the 1971-1998 precipitation input data from the 
actual historical record 
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Figure 6-26 Quantile-quantile plots of median normalized daily mean temperature by season 
for the historical 1971-1998 simulation period with historical observations as 
reference. Horizontal lines at -1 and 1 indicate the min and max observations. 
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Figure 6-27 Quantile-quantile plots of median normalized daily mean temperature by season 
for the projected 2041-2068 simulation period with 1971-1998 model values as 
reference. Horizontal lines at -1 and 1 indicate the min and max reference values.  
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Figure 6-28 Boxplots and annual percent change for nitrate loads for the NARCCAP 

simulation periods. The reference for the 1971-1998 percent change is the 
calibrated SWAT model. The reference for the 2041-2068 percent change is the 
historical NARCCAP-driven SWAT outputs. 
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CHAPTER 7: IMPLEMENTING LAND USE SCENARIOS 
WITH CLIMATE CHANGE 

Introduction 

 Climate change represented the atmospheric aspect of prediction and the boundaries were 

large, covering vast geographic and altitudinal dimensions. At the surface land use and cover 

(LULC) were the other aspects or axis that affects water quality and quantity. Excepting 

geological considerations for aquifers, the ridges that form the boundaries of watersheds gave a 

convenient focus area where the water that falls anywhere in this boundary will route and collect 

the constituents to a single point at the outlet by gravity. Thus the upstream inhabitants’ activities 

were responsible for any positive or negative effect to those downstream. Land use change was 

in some ways more complicated than climate change. While anthropogenic activities drove the 

current climate change, these activities were typically wide-spread and by definition global in 

scale. Barring catastrophic events, humans instigated land use change and the decisions that 

guide these changes were already complex for the individual human, but together with 

institutions, regulatory agencies, and the economy, the human system provided a complex 

challenge in computation and the modeling of physical systems.  

This chapter accessed the LULC impacts on water quality and water quantity through two 

tasks. The first task took a guided approach with LULC scenarios that met certain objectives: 

LULC distributions that maximized agricultural output, water quality, or biodiversity. With the 

11 climate models and a “base” LULC, the first task produced 44 land and climate change 

scenarios. The ICRB’s dominant LULC was agriculture, which was the primary culprit for poor 

water quality through fertilizer application and the subsequent runoff. SWAT’s allows LULC 

update by modifying percent or fraction of land area an HRU occupies in a subbasin. The second 

task generalized the first by changing or updating the HRU fractions such that the basin-wide 

percent of agriculture LULC changed linearly. Each update was a SWAT scenario, creating N × 

11 simulations with N changes to percent agricultural land. The dependent variables were stream 
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discharge and nitrate load. Because these scenarios required a complete representation of the 

ICRB, the SWAT simulations utilize the “full” model that did not lump small parcels, keeping 

all LULC and HRUS in the basin, regardless of their size. Agricultural land was defined as all 

LULC and their HRUs in SWAT that received fertilizer inputs, listed in Table 3-3 as corn, 

soybeans, lima beans, oats, peas, rye, sugarbeets, spring wheat, and winter wheat.  

Methods 

USACE Land Use Scenarios 

The production of guided or objective based land use scenarios was a collaboration with 

the United States Army Corps of Engineers (USACE). The USACE adapted a rule-based GIS 

method from Nassauer et al. (2007) that addressed agricultural watersheds in Iowa. This method 

yielded three scenarios that (1) maximizes agricultural commodity production (AGRP), (2) 

improves water quality and reduces flooding (WATQ) and (3) enhances biodiversity (BIOD). 

The creation of these three scenarios required several data manipulation efforts drawn from the 

following geographical data: the 2006 National Land Cover Dataset (NLCD), the National 

Wetland Inventory (NWI), the National Hydrography Dataset (NHD), NAVTEQ company’s 

physical infrastructure maps, the Protected Areas Database (PAD), and the U.S. soil survey 

geographic database (SSURGO).  

The most important drivers for the USACE scenarios were the SSURGO and NLCD. The 

SSURGO dataset was not present in SWAT model development and the NLCD played a minor 

role in filling gaps in the LULC time series. The NLCD classes and the SWAT equivalent were 

found in Table 3-5 in Chapter 3. From the NLCD classes, the USACE implementation produced 

maps that consolidate previously sub-divided LULC into 9 general classes: water, urban, forest, 

range/grassland, pasture, agriculture, wetlands, riparia and bioreserves. Riparia and bioreserves 

were completely new LULC designations that had no clear SWAT equivalent. For 

implementation in SWAT simulations and land use update, the SWAT equivalent LULC for 
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bioreserve was Range-grass or RNGE and riparia was non-forested wetland or WETN. The 

rationale for designating bioreserves as generic grassland stemmed from Iowa’s native, pre-

development biome being mostly prairie grassland, and the riparia were generalized riparian 

buffer zones around streams adjacent to agricultural land. The SSURGO Non-Irrigated 

Capability Class (NICC) provided a starting point for designating land suitable for agricultural 

development. The classes described restrictions to cultivation based on soil productivity, erosion 

potential, and impact on native wildlife where Class 1 had fewest restrictions and Class 8 had the 

most. Table 7-2 summarizes these classes (USDA, 2002). 

Along with the three scenarios, the USDA 2012 CDL and unmodified 2006 NLCD were 

the base scenarios. These two served as control scenarios: the CDL for the calibrated SWAT 

model and the NLCD because it was the base map for the USACE scenarios. Table 7-1 

summarizes the LULC distribution for the scenarios. Figure 7-1 contains maps for the NLCD, 

AGRP, WATQ, and BIOD scenarios. Figure 3-8 in 2012 was the USDA CDL base scenario. The 

AGRP scenario replaced most pasture and grasslands with agriculture when compared to the 

NLCD in Figure 7-1a; however, the total agriculture land is 76.9 percent from 73 percent in the 

NLCD. This limited increase was due to the creation of bioreserves where the NLCD originally 

had none. The wide crop buffer zones in WATQ greatly reduced agricultural land in favor of a 

predominantly pasture watershed at 40 percent coverage in Figure 7-1c. The BIOD map in 

Figure 7-1d is a mix of WATQ and AGRP, adding pasture land and expanding bioreserves at the 

expense of agricultural land, but agriculture still had the highest coverage at 38 percent.   

The USACE staff at Rock Island District deserve all credit for implementing the 

methodology described in this subsection to create the initial scenario maps before their 

processing to SWAT inputs (USACE, 2013). The following paragraphs summarize their work as 

well as describing how the scenario maps processed into SWAT inputs.  Each scenario had a set 

of rules and assumptions that automated the map creation. The SWAT_2009LUC tool processed 

these USACE maps in the same manner as Chapter 3’s Land Use Update subsection. The 

methods to analyze the stream discharge and nitrate load outputs for the USACE scenarios were 
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the same from Chapter 6: boxplots for visuals and the Mann-Whitney U-test for quantitative 

statistics. 

AGRP 

The AGRP scenario assumed that corn and soybeans were in continuous rotation, farms 

were less numerous but larger and highly industrialized, confined animal feeding operations 

(CAFO) replaced most grazing livestock, and cultivated land was only barred by steep slopes, 

public infrastructure, protected areas, and highly unproductive soils. The LULC conversion rules 

were that for NLCD cultivated or agricultural land, the SSURGO NICC 1-5 remained cultivated, 

Classes 6-7 became grasslands, and Class 8 changed to forests. For areas with steep slopes 

(>10% grade), the NICC 1-4 became pasture, 5-6 became grassland, and 7-8 became forests. The 

existing forests in the NLCD remained forest. A 10 meter buffer zone surrounded all streams, 

water bodies, and wetlands defined in the NHD and NWI; this buffer zone became the riparia 

LULC. The public lands in PAD became bioreserves. The developed areas in the NLCD became 

or remained the urban LULC and the wetlands from the NWI, NHD, and NLCD remained 

wetlands. 

WATQ 

The assumptions for WATQ included the dominance of pasture-based livestock 

production, corn and soybean rotations occured only on highly productive soils, and wide-spread 

adoption of riparian buffer zones on streams along with other water quality Best Management 

Practices (BMP). The rules followed a similar format as AGRP. NLCD cultivated land with 

NICC 1-3 remained cultivated, Classes 4-5 became pasture, Classes 6-7 became grassland, and 

Class 8 became forests. Steep slopes with NICC 1-4 became pasture, 5-6 became grassland, and 

7-8 became forests. The existing forests in the NLCD remained forest. 30 meter buffer zone or 

riparia surrounded all streams, water bodies, and wetlands. Cultivated lands had a 200 m buffer 

zone whose LULC depend on the NICCC: 1-4 became pasture, 5-6 became grassland, and 7-8 
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became forests. The public lands in PAD became bioreserves. The developed areas in the NLCD 

became or remain urban LULC and the wetlands from the NWI, NHD, and NLCD remained 

wetlands. 

BIOD 

The assumptions for the BIOD scenario included the creation of bioreserves via purchase 

of unproductive lands, adoption of moderate riparian buffers and BMPs that connect to 

bioreserves, agricultural lands remained dominant enterprise in areas with productive soils and 

unhindered by steep slopes, and CAFOs replaced grazing livestock. New bioreserves were 

created through the following process: (1) consolidate PAD, public lands, riparian areas, and 

existing forest into bioreserves, (2) fragment those areas using roads, (3) eliminate the 

fragments’ edges by 100 m and return the eedge area to the original LULC, (4) identify 

remaining “core” bioreserves whose area exceeded 12 acres, and (5) add 100 m edge to these 

core areas by reclassifying the boundary areas to bioreserve.  

Again, the reclassification rules followed AGRP and WATQ in pattern. NLCD cultivated 

land with NICC 1-2 remained cultivated, Classes 3-4 became pasture, Classes 5-6 became 

grassland, and Class 7-8 became forests. Steep slopes with NICC 1-4 became pasture, 5-6 

became grassland, and 7-8 became forests. The existing forests in the NLCD remained forest. 90 

meter buffer zone or riparia surround all streams, water bodies, and wetlands. The public lands in 

PAD became bioreserves in addition to new bioreserves described above. The developed areas in 

the NLCD became or remained the urban LULC and the wetlands from the NWI, NHD, and 

NLCD remained wetlands.  

Generalizing Agricultural LULC 

The ICRB’s dominant land use classes in NLCD were row crop agriculture thus the most 

change would come about by varying the total percent cover of agriculture over the basin. The 

goal was to create a series of LULC update files that changed total agricultural area by an equal 
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interval for each file. First, the LULC classes from Table 3-3 were separated into three groups: 

agricultural, non-agricultural, and static or constant HRUs. Constant LULC are the urban, barren, 

and water classes; their areas do not change in any of files. The agricultural lands were those 

HRUs that have fertilizer inputs, which included any LULC that were specific crops or were 

generic agriculture. The rest were non-agricultural, including pasture and alfalfa, because they 

did not have fertilizer inputs coded in the model. For each subbasin the agricultural HRUs’ areas 

were adjusted by a factor x: 

Equation 7-1 𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑙𝑙𝑔𝑔
∗ = 𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑙𝑙𝑔𝑔 ⋅ (1 + 𝑥𝑥) 

A*
sub,ag  was the new area and Asub,ag was the original area of a given agricultural HRU using the 

USDA 2012 CDL as the reference.  

A non-zero x adjustment factor would change the total area of all the HRUs once 

summed. This increase or decrease, depending on the x’s sign, was offset by the non-agricultural 

lands: 

Equation 7-2 𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑛𝑛𝑙𝑙𝑔𝑔
∗ = 𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑛𝑛𝑙𝑙𝑔𝑔 +

𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑛𝑛𝑙𝑙𝑔𝑔

∑𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑛𝑛𝑙𝑙𝑔𝑔
⋅  �∑𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑙𝑙𝑔𝑔 − ∑𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑙𝑙𝑔𝑔

∗ � 

A*
sub,nag  was the new area and Asub,nag  was the original area of a given non-agricultural HRU. 

Each non-agricultural HRU changed proportionally according to its original fraction with respect 

to the total non-agricultural land area. The second term on the right side of Equation 7-2 ensured 

that the offset gained or lost by the non-agricultural HRUs would result in the sum of all HRUs 

being equal to the subbasin area. For the simulations SWAT used the area fraction as the input 

and not the area itself: 

Equation 7-3 𝑓𝑓𝑠𝑠𝑠𝑠𝑏𝑏,𝐿𝐿𝐻𝐻
∗ =

𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝐿𝐿𝐻𝐻
∗

∑𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑛𝑛𝑙𝑙𝑔𝑔
∗ + ∑𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑙𝑙𝑔𝑔

∗ + ∑𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏,𝑎𝑎𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡
 

f*
sub,LU was the new fraction of a given HRU. The area terms in the previous equations were 

actually the fraction of a given HRU multiplied with the area: AHRU = fHRUAsub. 
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The values for the adjustment factor had the sequence x ϵ [-0.90, -0.80, …, 0.10, 0.20], 

excluding the base scenario zero. So, for example, at x=-0.90 the basin saw a 90 percent decrease 

in agricultural land from the 2012 CDL reference. 0.20 was the upper limit because any higher 

than a 20 percent increase, the total non-agricultural land area became negative. Spacing out x at 

10 percent intervals yields 11 LULC × 11 climate models = 121 total scenarios for the 2041-

2068 projected period. Due to the large number of simulations, the outputs were summarized to 

the mean of the entire period for each scenario. This generalization and modification of 

agricultural land area was exploratory in nature—the objective was to qualitatively assess the 

model’s sensitivity to changes in HRU area among different climate change models. 

Results and Discussion 

USACE Land Use Scenarios 

Figure 7-2 contains boxplots of the monthly stream discharge at the Wapello station for 

each LULC scenario, separated by season. Each box-and-whisker plot and their maximums 

covered the outputs from all NARCCAP models. The WATQ and BIOD scenarios showed a 

decrease in maximum discharges as well as decreases in medians for all seasons and models. 

BIOD had a less pronounced change relative to WATQ probably due to more cultivated land in 

the former. The USDA and NLCD distributions were similar to each other, but differ slightly in 

SON where NLCD reported a higher median. AGRP was also similar to the base scenarios, but 

had a lower maximum in all seasons. Although AGRP had slightly more agricultural land, the 

scenario also introduced the bioreserve and riparia LULC that did not exist in NLCD or USDA. 

Additionally, the USACE scenario generation procedure increased water area due to the spatial 

datasets the procedure used. 

Table 7-3 summarizes the p-values for the Mann-Whitney U-test for stream discharge; 

specifically, if the median of a scenario is significantly different from a reference. The reference 

was the historical NARCCAP-driven simulated discharges for the USDA base scenario. Table 
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7-3 was organized by climate models by rows, LULC scenarios by columns, and seasons by 

quadrants. The USDA columns were the same from the “Projected” columns in Table 6-4. The 

colors and their shades were aids for finding trends in the numbers. A seasonal trend appeared in 

all scenarios where statistically significantly higher median discharges were in the DJF and SON 

months for all climate models. MAM had less agreement and JJA had mixed results where 

CRCMccsm reports statistically significantly lower median discharge. In the LULC axis, NLCD 

and AGRP were similar to each other, at least with respect to the historical NARCCAP. The 

WATQ scenarios resulted in a majority of models showing few significantly different medians 

from the historical. BIOD showed a similar effect on median discharges, but the effect was less 

pronounced in DJF and MAM. If one accepted that JJA and CRCMccsm were non-conclusive, 

the climate change signal appeared to overwhelm the land use scenarios designed to address 

impacts to water quantity from agriculture. That is, the LULC scenarios mitigated increases in 

discharge due to climate change, but did not reduce them. The differences in the median 

discharges between climate models in Figure 6-13 were greater than medians between the land 

use scenarios in Figure 7-2, suggesting that changes in climate model configurations would have 

greater influence than land use alone. 

Figure 7-3 contains boxplots for monthly nitrate loads for the projected period by 

scenario. Here the differences between the USDA CDL map and NLCD-based maps were 

considerable. The USDA showed a maximum and median load exceeding all the other scenarios. 

The reason for this was likely due to the NLCD not having differentiated crops. The generic 

agricultural HRUs did not have the same calibration parameters as the corn and soybean HRUs 

in the USDA model. This decision to not include the crop-specific parameters was due to not 

knowing what the generic agricultural land is—applying crop-specific parameter edits to 

unknown LULC would bias the model results in an uncertain direction. A more conservative 

approach was to exclude the crop-specific parameters and simply have the USDA and NLCD 

results for comparison. NLCD and AGRP showed little difference, reflecting their comparable 

amount of agricultural land, but the median loads were higher than the historical medians. 
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WATQ scenario somewhat achieved its objective because the median load was right on the 

historical median and the maximum load was lower than AGRP or NLCD. BIOD’s median and 

maximum were also lower than NLCD, but BIOD’s median was higher than the historical. The 

boxplots indicated that despite the differences in results, the climate signal still showed with 

increased loads. 

Table 7-4 shows the p-values for the Mann-Whitney U-test for each scenario and climate 

models. The USDA column contains the same values from Table 6-10. Here one sees that 

despite the overall similarities across all climate models in the boxplot, the NLCD-based 

scenarios were not comparable due to USDA and NLCD yielding different results. NLCD had 

mixed results for median loads with no model ensemble agreement whereas USDA had a 

majority of climate models showing increased loads. Despite the p-values not being very 

meaningful by themselves, they can still be a point of reference for the other scenarios. AGRP 

displays a similar behavior as NLCD in p-values while WATQ showed decreases in median 

loads across all the climate models. BIOD had a similar behavior to WATQ. Overall, the 

scenarios seem to be behaving as they were designed: reduced median discharges suggested 

fewer flood events and the reduction in agricultural land in BIOD and WATQ lowered nitrate 

loads. 

Generalizing Agricultural LULC 

Figure 7-4 shows the projected period mean annual stream discharge as a function of 

percent agricultural land area over the basin, separated into seasons. While slopes for individual 

climate models may be different, SWAT exhibited a positive linear response to discharge as 

agricultural land area changed. A seasonal difference appeared in overall slope magnitudes and 

inter-model variation. DJF typically had low discharge due to water locked in snow or ice and no 

crops were grown in winter. Thus changes to agricultural land area had little influence in the 

winter months. MAM also had a small vertical width between models, but changes in discharge 

scaled steeply with agricultural land. JJA had the greatest magnitude in inter-model variability 
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given the differences in slopes and intercepts for each of the lines. SON exhibited a similar 

behavior to MAM and had a wide intercept range like JJA. Overall, when summarized as annual 

means, SWAT’s discharge increased linearly with agricultural land cover. This result likely came 

from the curve number (CN) method for surface runoff being the predominant contributor to 

discharge as well as how SWAT calculates the total discharge from an HRU. The CN stayed 

constant for the agricultural lands and their HRUs, thus leading to a constant runoff per area 

(Qsurf = mm·ha-1) regardless of percent coverage. If the area changed linearly, then the total 

contribution to discharge would increase linearly (Qsurf,tot = AHRU × Qsurf). 

Figure 7-5 shows the mean annual nitrate loads at Wapello as a function of agricultural 

land area. SWAT added fertilizer on a per area basis, similar to the surface runoff calculation in 

discharge. Despite very low percentage of agricultural land, the nitrate loads never went to zero 

as there were background sources of nitrogen as well as non-zero inputs from rainfall (wet and 

dry nitrogen deposition). Nevertheless, load followed discharge and so the plots here were also 

linear. To see how SWAT actually relates nitrate dynamics and agriculture, one should look at 

the concentrations. Figure 7-6 shows the mean daily concentration at Wapello as a function of 

agricultural land area. The different models all exhibited a similar behavior: a steeply linear trend 

at agricultural land area above 30 percent and then a sharp drop in concentration below that 

number. The lines also converged around 10-15 percent to a daily concentration slightly above 2 

mg·L-1. One reason that could explain the sharp changes was the elimination of agriculture 

altogether in subbasins with prominent non-agricultural HRUs. The difference between the 

lowest and highest concentration was not great: 1.75 mg·L-1 and 3.75 mg·L-1, an increase of 

about two-fold. These concentrations were low because they also included the non-growing 

season when nitrogen levels were expected to be very low. For comparison, the observed mean 

daily nitrate concentrations at Wapello for months excluding DJF was 4.26 mg·L-1 (Table 2-3).  
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Conclusion 

 The USACE scenarios proposed drastic changes to the ICRB; an Iowan landscape with 

cultivated land reduced to less than half of its current condition would be difficult to imagine. 

But the year 2068 is far into the future, and the changes wrought on the natural landscape over 

the last 200 years could very well change again in the same magnitude in the next century. Even 

with the large reduction in agriculture, the change in discharge and loads were modest, perhaps 

due to the climate change signal being greater than that of land use. Conclusions were difficult to 

draw for the USACE scenarios as the NLCD base and the calibrated model native USDA base 

yielded different distributions with the same climate inputs. While instructive the USACE 

scenarios cannot be fully incorporated into the existing calibrated SWAT model due to the 

NLCD creating a different HRU distribution than those for the USDA CDL. Despite this non-

comparability, the USACE scenarios led to an observation that SWAT’s discharge and nitrogen 

dynamics responded monotonically with agricultural land: as agriculture increased, so did 

discharge and nitrate. While agricultural land was the variable being modified, the actual culprit 

in increased nitrate was nitrogen fertilizer application whose inputs into the stream network 

increased proportionally to the HRU area.  

The USACE scenarios themselves consisted of files that modify the existing model’s 

HRU distribution. So when the files were modified directly and the agricultural land area 

coverage scaled at equal intervals, any decrease in nitrate from the basin or decrease in discharge 

was proportional to the agricultural land cover. In the case of stream discharge, the relationship 

was linear when averaged from three decades, but the slope displayed a definite seasonal 

variation, a variation likely explained by the input data. The linear response of nitrate load to 

percent change in agricultural land was similar to but weaker than Yaeger et al. (2014), whose 

SWAT model application and analysis showed a 1:1 correspondence between percent reduction 

in nitrate load and percent reduction in cropland or agriculture. Chapter 6 showed that summer 

months or JJA had the greatest variation between climate models—enough variation as to escape 
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a conclusion on whether discharge decreases or increases. This variation showed up again in 

Figure 7-4 with the wide range the minimum and maximum discharges take during JJA.  

Nitrate concentration and agricultural land area had a more complex relationship. Spatial 

variability was not considered in this analysis like Ewing & Runck (2015) where the trade-off 

between water quality and crop yields in Iowa had differences between counties. Instead, the 

focus of the evaluation was concentration at the terminal gage station averaged decades. The data 

aggregation would obfuscate the relationship between local water quality and agriculture. Still, if 

one were to set all agricultural land area in the basin to zero, the nitrate concentrations would not 

drop to zero. Legacy nitrogen in the soil hard-coded as the initial soil organic nitrogen parameter 

(SOL_ORGN, Table 4-4), natural background cycling, and a non-zero wet deposition (RCN) 

would maintain a minimum nitrate export. Additionally, one must consider that these were 

model outputs from an autocalibration that generally under-predicted nitrate loads and 

concentration over a five year span. Between land use and climate change the latter had a greater 

impact, often muting extreme changes to the landscape. Nevertheless, to meaningfully simulate 

the impacts of LULC change, SWAT required more comprehensive management information or 

a method or model to dynamically produce the management information. Changing the inputs or 

modifying the HRU distribution yielded results that have a more exploratory research narrative, 

as opposed to a predictive one useful in policy and engineering. 
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Table 7-1 Land use class distribution (%) over ICRB with the USACE scenarios and the 
base NLCD map. 

 

Land Use NLCD Base Agriculture Biodiversity Water Quality 

Agriculture 73.0 76.9 38.0 28.4 

Pasture 6.1 0.2 16.4 40.0 

Range 5.6 0.3 0.9 1.5 

Forest 3.4 3.0 1.7 3.3 

Water 0.8 2.1 0.8 2.1 

Wetlands 2.5 3.0 7.3 7.3 

Urban 8.7 8.6 8.6 8.6 

Bioreserve 0.0 5.0 18.8 8.1 

Riparia 0.0 0.9 6.3 0.7 

 
 

 
Table 7-2 SSURGO Non-Irrigated Class Definitions 
 

Class Description 

1 Soils have slight limitations that restrict their use. 

2 Soils have moderate limitations that reduce the choice of plants or require moderate 
conservation practices. 

3 Soils have severe limitations that reduce the choice of plants or require special 
conservation practices, or both. 

4 Soils have very severe limitations that restrict the choice of plants or require very careful 
management, or both. 

5 Soils have little or no hazard of erosion but have other limitations, impractical to remove, 
that limit their use mainly to pasture, range, forestland, or wildlife food and cover. 

6 Soils have severe limitations that make them generally unsuited to cultivation and that 
limit their use mainly to pasture, range, forestland, or wildlife food and cover. 

7 Soils have very severe limitations that make them unsuited to cultivation and that restrict 
their use mainly to grazing, forestland, or wildlife. 

8 
Soils and miscellaneous areas have limitations that preclude their use for commercial plant 
production and limit their use to recreation, wildlife, or water supply or for esthetic 
purposes. 
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Table 7-3 Stream discharge Mann-Whitney U-test p-values for climate and land use change 
scenarios with historical NARCCAP-driven discharge as reference. Shades of 
orange indicate medians statistically significantly less than historical climate 
model and shades of blue indicate greater.  

 
  USDA NLCD AGRP WATQ BIOD USDA NLCD AGRP WATQ BIOD 

      DJF        MAM   
CRCMccsm 0.37 0.13 0.24 0.34 0.22 <0.01 <0.01 <0.01 0.16 0.02 

CRCMcgcm3 0.02 <0.01 <0.01 0.06 0.01 0.27 0.13 0.18 0.66 0.73 

ECP2gfdl 0.08 <0.01 0.02 0.17 0.08 0.56 0.34 0.46 0.37 0.79 

HRM3gfdl <0.01 <0.01 <0.01 0.08 0.01 0.71 0.57 0.72 0.21 0.57 

HRM3hadcm3 <0.01 <0.01 <0.01 <0.01 <0.01 0.13 0.08 0.15 0.79 0.46 

MM5Iccsm 0.72 0.63 0.80 0.51 0.77 0.21 0.13 0.18 0.36 0.97 

MM5Ihadcm3 0.29 0.61 0.44 0.17 0.33 0.84 0.63 0.78 0.16 0.46 

RCM3cgcm3 0.14 0.01 0.02 0.27 0.12 0.08 0.02 0.06 0.97 0.44 

RCM3gfdl 0.02 <0.01 <0.01 0.08 0.02 <0.01 <0.01 <0.01 0.06 <0.01 

WRFGccsm 0.70 0.91 0.98 0.40 0.71 <0.01 <0.01 <0.01 0.33 0.09 

WRFGcgcm3 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 0.05 0.93 0.41 

    JJA      SON   

CRCMccsm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 

CRCMcgcm3 0.64 0.35 0.44 0.66 0.57 0.98 0.32 0.33 0.12 0.61 

ECP2gfdl 0.44 0.17 0.24 0.90 0.60 0.01 <0.01 <0.01 0.26 0.02 

HRM3gfdl 0.33 0.67 0.56 0.18 0.33 0.07 <0.01 <0.01 0.96 0.24 

HRM3hadcm3 0.94 0.51 0.63 0.81 0.97 <0.01 <0.01 <0.01 <0.01 <0.01 

MM5Iccsm 0.75 0.37 0.47 0.93 0.82 <0.01 <0.01 <0.01 0.02 <0.01 

MM5Ihadcm3 0.39 0.75 0.62 0.20 0.34 0.08 0.01 0.01 0.84 0.22 

RCM3cgcm3 <0.01 <0.01 <0.01 0.02 0.01 0.15 0.01 0.01 0.90 0.30 

RCM3gfdl 0.02 <0.01 <0.01 0.19 0.08 <0.01 <0.01 <0.01 0.07 <0.01 

WRFGccsm 0.17 0.27 0.24 0.09 0.13 0.02 <0.01 <0.01 0.52 0.12 

WRFGcgcm3 0.02 <0.01 <0.01 0.07 0.02 <0.01 <0.01 <0.01 0.09 <0.01 
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Table 7-4 Nitrate load Mann-Whitney U-test p-values for climate and land use change 
scenarios with historical NARCCAP-driven discharge as reference. Shades of 
orange indicate medians statistically significantly less than historical climate 
model and shades of blue indicate greater 

 
  USDA NLCD AGRP WATQ BIOD 
CRCMccsm 0.26 0.01 <0.01 <0.01 <0.01 
CRCMcgcm3 0.38 0.10 0.03 <0.01 <0.01 
ECP2gfdl <0.01 0.66 0.55 <0.01 <0.01 
HRM3gfdl 0.38 0.04 0.03 <0.01 <0.01 
HRM3hadcm3 <0.01 0.44 0.58 <0.01 0.02 
MM5Iccsm <0.01 0.78 0.59 <0.01 <0.01 
MM5Ihadcm3 0.20 0.01 <0.01 <0.01 <0.01 
RCM3cgcm3 <0.01 0.60 0.79 <0.01 0.01 
RCM3gfdl <0.01 0.01 0.03 <0.01 0.58 
WRFGccsm 0.13 0.21 0.14 <0.01 <0.01 
WRFGcgcm3 <0.01 0.04 0.15 <0.01 0.35 
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Figure 7-1 LULC scenarios generated by the U.S. Army Corps of Engineers 
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Figure 7-2 Boxplots of monthly stream discharge by season for the LULC scenarios and two 

base scenarios covering the projected 2041-2068 period. Each boxplot contains 
outputs from all 11 NARCCAP climate change models 
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Figure 7-3 Boxplots of monthly nitrate loads for the LULC scenarios and two base scenarios 

covering the projected 2041-2068 period. Each boxplot contains outputs from all 
11 NARCCAP climate change models.  
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Figure 7-4 NARCCAP driven SWAT simulated mean annual discharge versus total percent 

agricultural land in the basin partitioned into seasons for projected period 2041-
2068  
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Figure 7-5 NARCCAP driven SWAT simulated mean annual nitrate as a function of total 

percent agricultural land in the basin for projected period 2041-2068 
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Figure 7-6 NARCCAP driven SWAT simulated mean daily nitrate concentration as a 

function of total percent agricultural land in the basin for projected period 2041-
2068 
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CHAPTER 8: SUMMARY OF FINDINGS 

To conclude this dissertation, the summary of findings is organized by the research 

questions and objectives listed at the beginning in Chapter 1: 

 

(1) For stream discharge and nitrate load, SWAT was an appropriate watershed model for the 

simulation of large spatial (HUC-4) and temporal (20+ years) domains which provided 

simulation results within accepted statistical criteria. As nitrate load is a function of 

stream discharge, one must also be able to simulate nitrate concentration (H1c) to gage 

the model’s performance. SWAT did not simulate nitrogen as effectively, but the poorer 

performance seen for this parameter may be due to uncertainty in the input data rather 

than anything inherent in SWAT’s theoretical basis or software implementation. Despite 

not meeting the literature goodness of fit criteria (NSE > 0.50), the nitrate concentration 

simulations successfully reproduced spikes seen in the observed time series.  

 

(2) The artificial neural network (ANN) used temperature, time, and simulated discharge as 

inputs in a weak coupling to attempt simulating nitrate concentrations, for which this 

particular SWAT model failed to achieve the necessary statistics. The ANN-SWAT 

coupling resulted in improved statistics for nitrate concentrations, exceeding that of 

literature values (NSE > 0.60). On inspection of the time-series, the coupling failed where 

SWAT succeeds and vice versa. That is, the calibrated SWAT model did not produce 

nitrate concentrations observed during the low flow periods in 2012, but the ANN could. 

The ANN, in turn, did not simulate the high concentrations during 2013 as well (or at all) 

in the case of Wapello.  

 

(3) For climate change modeling and projections, multiple models were utilized for 

assessment. The NARCCAP model ensemble passed the first test where the historical 
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period (1971-1998) was simulated and compared to the outputs from the calibrated model 

using observed climate data. The NARCCAP-driven precipitation, discharge, 

evapotranspiration, and nitrate loads showed no statistically significant difference from 

the model calibration. When applied to the projected time period (2041-2068), the model 

ensemble agreement depended on the season and on output variables. Projected monthly 

cumulative precipitation showed agreement on an increase except for June-July where the 

ensemble showed mixed results. Monthly mean discharges projections showed similar 

results. Projected monthly cumulative evapotranspiration values increased largely in Dec-

Feb, and while agreement occurred for the other seasons, the differences were not large. 

The ensemble NARCCAP-driven SWAT model projections showed an agreement on 

projected nitrate loads which increased relative to the historical simulation.  

 

(4) Land use (LULC) change is a complex phenomenon for which SWAT was one piece. To 

accurately simulate the impacts, one must include other models. The impetus for this 

LULC investigation started with scenarios generated by the U.S. Army Corps of 

Engineers (USACE). The USACE scenarios yielded model results consistent with their 

objectives; e.g. the water quality and biodiversity scenarios reduced median flows and 

nitrate loads whereas in the agriculture scenario they increased. When translated to 

SWAT the scenarios were changes to the LULC distributions in the input data. Scenarios 

ranging from 20-90 percent of land in row-crop agriculture yielded a linear and 

increasing trend for discharge and nitrate loads. Nitrate concentrations behaved with 

more complexity and were only linear when agricultural land cover was greater than 30 

percent.  

Further Research 

The issues with nitrate concentration as simulated by SWAT alone can be further 

explored if SWAT was allowed to run on high-performance computing platforms, because then 
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the limitation of having only so many subbasins or so many HRUs would not be an issue. For 

such a large basin, having only 67 computational elements for in-stream nitrogen cycling 

predictably leads to poor in-stream nitrogen concentration results. On the other hand, the ANN-

SWAT approach could be reworked to use different ANN architectures. The architecture used in 

this dissertation is reliable but quite rudimentary. Modern methods for ANN are more involved 

and may yield better results. The number of NARCCAP models have only increased since the 

start of the climate change simulations. The limitation of 11 GCM-RCM was convenient because 

they were all available at the time. But if model ensembles are better for predicting the future, a 

chorus would only be an improvement. The LULC change methods could use some modeling 

themselves. Techniques such as agent-based modeling explicitly defines owners of land parcels 

and simulates their decision-making process. Dynamic simulation of LULC change versus static 

scenarios would expand on SWAT’s utility.   

Publication Potential 

At the moment of this dissertation’s submission, one manuscript is in progress for 

submission to a peer-review journal with the Journal of Hydrology as the target. The content of 

the manuscript is from Objective (3) of Chapter 6 of this dissertation. Chapter 6 was from a 

collaboration with William Gutowski and Sho Kawazoe of Iowa State University. The results 

from that chapter were indebted to their work on bias-correction and preparation of NARCCAP 

outputs for hydrological simulation. Given the number of climate models, figures, and methods 

of analysis, Chapter 6 is a novel and substantive submission for publication. 

At least two methodology-related publications may result from this dissertation. First, 

Chapter 3 and Chapter 4 detailed the model development and calibration using a novel 

calibration technique combining SWAT-CUP, SUFI2, and GAM. While model development 

cycles logically separate sensitivity and calibration, an automation of both may hasten calibration 

as well as ensure the process is comprehensive, including all parameters at the start. 

Consolidated into a software library for R, the programming language of choice, this combined 
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autocalibration and sensitivity method is a good candidate of publication. Second, the use of 

artificial neural networks is not uncommon in hydrological research, but directly coupling them 

with physically-based models—in particular SWAT—is not commonly done. The results from 

Chapter 5 showed promise in the improved statistics and be viable for publication. 

The last topic in land use change ends on an exploratory note. The future of this SWAT 

model lies in sharing it with other researchers. The tools and methods described in this 

dissertation do not fully address LULC change. While accurate maps of land cover exist, the 

actual land management practices would give a more complete picture of land use. The 

dissertation draws special attention to projections of climate change, collaboration and extension 

of scenarios for LULC change are important undertakings for understanding and predicting the 

future of the Iowa-Cedar River Basin. 
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APPENDIX 

Table A-1 Subbasin and channel dimensions 

 
 Subbasin Subbasin Dimension Channel Dimensions (m) 

 Absolute  
Area (km2) 

Drainage  
Area (km2) 

Mean  
Elevation (m) Length Width Depth 

1 395.8 395.8 377.6 19.4 46.7 1.4 
2 640.7 640.7 390.0 16.7 62.3 1.7 
3 371.4 1408.0 379.9 22.1 99.9 2.4 
4 755.1 755.1 382.8 25.5 68.8 1.8 
5 685.7 2093.7 369.1 19.9 126.8 2.8 
6 595.4 595.4 384.8 17.6 59.6 1.7 
7 147.5 2241.2 354.6 29.1 132.1 2.8 
8 738.1 1333.5 371.2 50.8 96.7 2.3 
9 539.5 2780.7 343.5 29.1 150.3 3.1 

10 392.8 1726.3 354.4 32.8 112.9 2.6 
11 597.5 1352.7 361.9 62.2 97.6 2.3 
12 147.2 2927.9 317.9 65.8 72.0 1.9 
13 815.1 815.1 362.2 17.3 45.7 1.4 
14 382.0 382.0 375.3 26.5 54.4 1.6 
15 511.4 511.4 375.2 41.6 177.6 3.5 
16 593.4 3672.3 323.7 11.5 46.4 1.4 
17 392.3 392.3 328.6 15.8 85.4 2.1 
18 189.1 1082.5 369.6 41.3 73.5 1.9 
19 843.5 843.5 352.1 19.1 52.5 1.5 
20 482.1 482.1 355.0 7.3 104.2 2.4 
21 184.2 1509.8 316.6 7.0 43.3 1.4 
22 349.4 349.4 350.1 44.0 201.1 3.8 
23 450.3 4514.9 300.3 62.2 196.9 3.7 
24 422.7 6796.8 295.6 3.2 45.4 1.4 
25 615.9 4358.9 302.7 37.2 82.6 2.1 
26 377.5 377.5 334.5 18.0 75.4 2.0 
27 648.1 1025.6 308.2 34.1 394.1 5.9 
28 213.3 12394.6 276.9 22.7 69.8 1.9 
29 105.7 879.4 278.1 18.4 58.6 1.7 
30 583.4 13857.4 275.0 9.1 71.1 1.9 
31 773.7 773.7 306.0 53.5 73.9 1.9 
32 579.0 579.0 349.7 31.7 422.2 6.2 
33 220.0 799.0 331.2 25.0 168.3 3.3 
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Table A-1 Subbasin and channel dimensions (continued) 

 
 Subbasin Subbasin Dimension Channel Dimensions (m) 

 
Absolute  
Area (km2) 

Drainage  
Area (km2) 

Mean  
Elevation (m) Length Width Depth 

34 936.3 2018.7 353.8 12.0 48.2 1.5 
35 850.7 850.7 299.3 38.4 432.0 6.3 
36 835.2 15543.4 274.3 17.0 185.9 3.6 
37 539.9 3357.6 316.3 11.0 194.4 3.7 
38 417.6 417.6 325.7 0.2 42.3 1.3 
39 603.0 16146.4 263.7 23.7 443.0 6.4 
40 186.3 3961.6 293.9 33.4 57.1 1.6 
41 305.9 4267.5 300.2 27.0 58.3 1.6 
42 336.4 336.4 300.2 66.5 227.1 4.1 
43 694.3 16840.7 259.4 21.2 155.1 3.2 
44 553.5 553.5 263.8 49.4 257.0 4.4 
45 573.6 573.6 280.6 24.9 368.6 5.6 
46 927.0 5530.9 281.3 118.4 124.1 2.7 
47 782.8 18177.1 254.8 36.0 463.8 6.6 
48 548.3 6652.8 265.1 25.6 311.2 5.0 
49 292.2 7516.7 244.5 34.2 648.5 8.2 
50 571.7 571.7 276.8 27.6 253.7 4.4 
51 936.1 8452.8 237.6 31.0 273.0 4.6 
52 520.0 520.0 242.3 31.3 58.2 1.6 
53 614.5 18791.6 236.0 45.8 292.9 4.8 
54 576.6 576.6 228.4 18.9 55.0 1.6 
55 166.5 8619.4 211.1 53.7 473.1 6.7 
56 820.9 820.9 261.5 4.5 58.5 1.7 
57 210.2 9349.5 213.3 19.1 296.4 4.9 
58 330.7 330.7 256.3 35.8 72.3 1.9 
59 496.9 1648.5 225.3 3.6 41.9 1.3 
60 420.1 420.1 217.5 54.1 109.9 2.5 
61 276.2 19644.4 204.2 8.0 48.4 1.5 
62 102.4 11100.4 215.2 24.8 485.9 6.8 
63 412.6 11513.0 204.6 9.2 345.0 5.4 
64 206.7 31784.2 194.4 28.7 352.6 5.5 
65 402.1 402.1 216.7 20.9 47.1 1.4 
66 147.5 32333.7 193.6 12.3 655.2 8.3 
67 332.4 32666.2 200.3 28.8 659.2 8.3 
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Table A-2 Comparisons between GCMs used in this thesis; adapted from Mearns et al. 
(2014) 

 
Model Resolution (Vertical Layers) Highest Layer  
 Surface  Ocean Pressure (Pa) Land Soil 

CCSM 1.4° × 1.4° (26) 0.3° - 1.0° (40) 220 Layers 

CGCM3 1.9° × 1.9° (31) 0.9° × 1.4° (29) 100 Layers 

GFDL 2.0° × 2.5° (varies) 0.3° - 1.0° (varies) 300 Bucket 

HadCM3 2.5° × 3.75° (19) 1.25° × 1.25° (20) 500 Layers 

 

 
Table A-3 Comparisons between RCMs used in this thesis; adapted from Mearns et al. 

(2014)* 

 
 
Model CRCM ECP2 HRM3 MM5I RCM3 WRFG 

Resolution** 160 × 135 193 × 152 171 × 146 154 × 129 160 × 130 155 × 130 

Vertical 
Layers 29 28 19 23 18 35 

Time Step   900 s 100 s 300 s 120 s 150 s 150 s 

Vegetation 
Classes 21 13 53 16 19 24 

 
**Units units depend on the geographic coverage of the regional model 
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